BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19784601)

  • 1. Imaging lipid membrane domains with lipid-specific probes.
    Hullin-Matsuda F; Ishitsuka R; Takahashi M; Kobayashi T
    Methods Mol Biol; 2009; 580():203-20. PubMed ID: 19784601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging lipid rafts.
    Ishitsuka R; Sato SB; Kobayashi T
    J Biochem; 2005 Mar; 137(3):249-54. PubMed ID: 15809325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells.
    Gombos I; Steinbach G; Pomozi I; Balogh A; Vámosi G; Gansen A; László G; Garab G; Matkó J
    Cytometry A; 2008 Mar; 73(3):220-9. PubMed ID: 18163467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers.
    Matsumori N; Okazaki H; Nomura K; Murata M
    Chem Phys Lipids; 2011 Jul; 164(5):401-8. PubMed ID: 21664344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin.
    Alam JM; Kobayashi T; Yamazaki M
    Biochemistry; 2012 Jun; 51(25):5160-72. PubMed ID: 22668506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of Lipid Membrane Reorganization Induced by a Pore-Forming Toxin Using High-Speed Atomic Force Microscopy.
    Yilmaz N; Kobayashi T
    ACS Nano; 2015 Aug; 9(8):7960-7. PubMed ID: 26222645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts).
    Waheed AA; Shimada Y; Heijnen HF; Nakamura M; Inomata M; Hayashi M; Iwashita S; Slot JW; Ohno-Iwashita Y
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4926-31. PubMed ID: 11309501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains.
    Kishimoto T; Ishitsuka R; Kobayashi T
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):812-829. PubMed ID: 26993577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol and lipid/protein ratio control the oligomerization of a sphingomyelin-specific toxin, lysenin.
    Ishitsuka R; Kobayashi T
    Biochemistry; 2007 Feb; 46(6):1495-502. PubMed ID: 17243772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale imaging of domains in supported lipid membranes.
    Johnston LJ
    Langmuir; 2007 May; 23(11):5886-95. PubMed ID: 17428076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the distribution and dynamics of signaling microdomains in living cells with lipid-specific probes.
    Hullin-Matsuda F; Kobayashi T
    Cell Mol Life Sci; 2007 Oct; 64(19-20):2492-504. PubMed ID: 17876518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F; Tavares M; Dufourc EJ
    Biochemistry; 2003 Feb; 42(6):1383-90. PubMed ID: 12578350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical recognition of sphingomyelin-rich membrane domains by atomic force microscopy.
    Wang T; Shogomori H; Hara M; Yamada T; Kobayashi T
    Biochemistry; 2012 Jan; 51(1):74-82. PubMed ID: 22148674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol reporter molecules.
    Gimpl G; Gehrig-Burger K
    Biosci Rep; 2007 Dec; 27(6):335-58. PubMed ID: 17668316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of the domain organization in sphingomyelin and phosphatidylcholine monolayers.
    Prenner E; Honsek G; Hönig D; Möbius D; Lohner K
    Chem Phys Lipids; 2007 Feb; 145(2):106-18. PubMed ID: 17188673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three unrelated sphingomyelin analogs spontaneously cluster into plasma membrane micrometric domains.
    Tyteca D; D'Auria L; Der Smissen PV; Medts T; Carpentier S; Monbaliu JC; de Diesbach P; Courtoy PJ
    Biochim Biophys Acta; 2010 May; 1798(5):909-27. PubMed ID: 20123084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysophospholipids prevent binding of a cytolytic protein ostreolysin to cholesterol-enriched membrane domains.
    Chowdhury HH; Rebolj K; Kreft M; Zorec R; Macek P; Sepcić K
    Toxicon; 2008 Jun; 51(8):1345-56. PubMed ID: 18455213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.