BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19784604)

  • 1. Activity-based profiling of lipases in living cells.
    Schicher M; Jesse I; Birner-Gruenberger R
    Methods Mol Biol; 2009; 580():251-66. PubMed ID: 19784604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tagging and detection strategies for activity-based proteomics.
    Sadaghiani AM; Verhelst SH; Bogyo M
    Curr Opin Chem Biol; 2007 Feb; 11(1):20-8. PubMed ID: 17174138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical probes for profiling fatty acid-associated proteins in living cells.
    Raghavan A; Charron G; Flexner J; Hang HC
    Bioorg Med Chem Lett; 2008 Nov; 18(22):5982-6. PubMed ID: 18929483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoaffinity labeling in activity-based protein profiling.
    Geurink PP; Prely LM; van der Marel GA; Bischoff R; Overkleeft HS
    Top Curr Chem; 2012; 324():85-113. PubMed ID: 22028098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism-based proteomics tools based on ubiquitin and ubiquitin-like proteins: synthesis of active site-directed probes.
    Ovaa H; Galardy PJ; Ploegh HL
    Methods Enzymol; 2005; 399():468-78. PubMed ID: 16338376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity based subcellular resolution imaging of lipases.
    Viertler M; Schittmayer M; Birner-Gruenberger R
    Bioorg Med Chem; 2012 Jan; 20(2):628-32. PubMed ID: 21570307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical proteomics from a nuclear magnetic resonance spectroscopy perspective.
    Sem DS
    Expert Rev Proteomics; 2004 Aug; 1(2):165-78. PubMed ID: 15966811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteome analysis using amine-reactive isobaric tagging reagents coupled with 2D LC/MS/MS in 3T3-L1 adipocytes following hypoxia or normoxia.
    Choi S; Cho K; Kim J; Yea K; Park G; Lee J; Ryu SH; Kim J; Kim YH
    Biochem Biophys Res Commun; 2009 May; 383(1):135-40. PubMed ID: 19336224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-alpha in 3T3-L1 adipocytes and is a target for transactivation by PPARgamma.
    Kim JY; Tillison K; Lee JH; Rearick DA; Smas CM
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E115-27. PubMed ID: 16705060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipolytic proteomics.
    Schittmayer M; Birner-Gruenberger R
    Mass Spectrom Rev; 2012; 31(5):570-82. PubMed ID: 22392637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and testing of mechanism-based protein-profiling probes for retaining endo-glycosidases.
    Williams SJ; Hekmat O; Withers SG
    Chembiochem; 2006 Jan; 7(1):116-24. PubMed ID: 16397879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic imaging of protease activity with fluorescently quenched activity-based probes.
    Blum G; Mullins SR; Keren K; Fonovic M; Jedeszko C; Rice MJ; Sloane BF; Bogyo M
    Nat Chem Biol; 2005 Sep; 1(4):203-9. PubMed ID: 16408036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the preferred modification sites of the quinone methide intermediate resulting from the latent trapping device of the activity probes for hydrolases.
    Lo LC; Chiang YL; Kuo CH; Liao HK; Chen YJ; Lin JJ
    Biochem Biophys Res Commun; 2005 Jan; 326(1):30-5. PubMed ID: 15567148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-based proteomics: enzymatic activity profiling in complex proteomes.
    Schmidinger H; Hermetter A; Birner-Gruenberger R
    Amino Acids; 2006 Jun; 30(4):333-50. PubMed ID: 16773240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probes for activity-based profiling of plant proteases.
    van der Hoorn RA; Kaiser M
    Physiol Plant; 2012 May; 145(1):18-27. PubMed ID: 21985675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical tools for activity-based proteomics.
    Hagenstein MC; Sewald N
    J Biotechnol; 2006 Jun; 124(1):56-73. PubMed ID: 16442651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging.
    Dieterich DC; Lee JJ; Link AJ; Graumann J; Tirrell DA; Schuman EM
    Nat Protoc; 2007; 2(3):532-40. PubMed ID: 17406607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipolytic and esterolytic activity-based profiling of murine liver.
    Birner-Gruenberger R; Susani-Etzerodt H; Kollroser M; Rechberger GN; Hermetter A
    Proteomics; 2008 Sep; 8(17):3645-56. PubMed ID: 18683815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein profiling of active cysteine cathepsins in living cells using an activity-based probe containing a cell-penetrating peptide.
    Fan F; Nie S; Dammer EB; Duong DM; Pan D; Ping L; Zhai L; Wu J; Hong X; Qin L; Xu P; Zhang YH
    J Proteome Res; 2012 Dec; 11(12):5763-72. PubMed ID: 23082807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional proteomic analysis of lipases and esterases in cultured human adipocytes.
    Schicher M; Morak M; Birner-Gruenberger R; Kayer H; Stojcic B; Rechberger G; Kollroser M; Hermetter A
    J Proteome Res; 2010 Dec; 9(12):6334-44. PubMed ID: 20942458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.