These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 19784806)
1. Modelling the long-term fate of mercury in a lowland tidal river. I. Description of two finite segment models. Braga MC; Birkett JW; Lester JN; Shaw G Arch Environ Contam Toxicol; 2010 Feb; 58(2):373-82. PubMed ID: 19784806 [TBL] [Abstract][Full Text] [Related]
2. Modelling the long-term fate of mercury in a lowland tidal river. II. Calibration and comparison of two models with field data. Braga MC; Birkett JW; Shaw G; Lester JN Arch Environ Contam Toxicol; 2010 Feb; 58(2):383-93. PubMed ID: 19784805 [TBL] [Abstract][Full Text] [Related]
3. Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: application to Lahontan Reservoir (Nevada, USA). Gandhi N; Bhavsar SP; Diamond ML; Kuwabara JS; Marvin-Dipasquale M; Krabbenhoft DP Environ Toxicol Chem; 2007 Nov; 26(11):2260-73. PubMed ID: 17941724 [TBL] [Abstract][Full Text] [Related]
4. Modelling of mercury transport and transformation processes in the Idrijca and Soca river system. Zagar D; Knap A; Warwick JJ; Rajar R; Horvat M; Cetina M Sci Total Environ; 2006 Sep; 368(1):149-63. PubMed ID: 16253308 [TBL] [Abstract][Full Text] [Related]
5. Investigating the fate and transport of fecal coliform contamination in a tidal estuarine system using a three-dimensional model. Chen WB; Liu WC Mar Pollut Bull; 2017 Mar; 116(1-2):365-384. PubMed ID: 28117132 [TBL] [Abstract][Full Text] [Related]
6. Sediment-adsorbed total mercury flux through Yolo Bypass, the primary floodway and wetland in the Sacramento Valley, California. Springborn M; Singer MB; Dunne T Sci Total Environ; 2011 Dec; 412-413():203-13. PubMed ID: 22078330 [TBL] [Abstract][Full Text] [Related]
7. Fate and tidal transport of butyltin and mercury compounds in the waters of the tropical Bach Dang Estuary (Haiphong, Vietnam). Navarro P; Amouroux D; Thanh ND; Rochelle-Newall E; Ouillon S; Arfi R; Van TC; Mari X; Torréton JP Mar Pollut Bull; 2012 Sep; 64(9):1789-98. PubMed ID: 22717320 [TBL] [Abstract][Full Text] [Related]
8. Modelling the fate of nitrite in an urbanized river using experimentally obtained nitrifier growth parameters. Raimonet M; Vilmin L; Flipo N; Rocher V; Laverman AM Water Res; 2015 Apr; 73():373-87. PubMed ID: 25704156 [TBL] [Abstract][Full Text] [Related]
9. Dynamic mass balance model for mercury in the St. Lawrence River near Cornwall, Ontario, Canada. Lessard CR; Poulain AJ; Ridal JJ; Blais JM Sci Total Environ; 2014 Dec; 500-501():131-8. PubMed ID: 25217751 [TBL] [Abstract][Full Text] [Related]
10. Tracing suspended sediment sources in catchments and river systems. Walling DE Sci Total Environ; 2005 May; 344(1-3):159-84. PubMed ID: 15907516 [TBL] [Abstract][Full Text] [Related]
11. High-resolution pollutant dispersion modelling in contaminated coastal sites. Ramšak V; Malačič V; Ličer M; Kotnik J; Horvat M; Žagar D Environ Res; 2013 Aug; 125():103-12. PubMed ID: 23477567 [TBL] [Abstract][Full Text] [Related]
12. Historic brownfields and industrial activity in Kingston, Ontario: assessing potential contributions to mercury contamination in sediment of the Cataraqui River. Manion NC; Campbell L; Rutter A Sci Total Environ; 2010 Apr; 408(9):2060-7. PubMed ID: 20172591 [TBL] [Abstract][Full Text] [Related]
13. Mercury speciation in the Valdeazogues River-La Serena Reservoir system: influence of Almadén (Spain) historic mining activities. Berzas Nevado JJ; Rodríguez Martín-Doimeadios RC; Moreno MJ Sci Total Environ; 2009 Mar; 407(7):2372-82. PubMed ID: 19167027 [TBL] [Abstract][Full Text] [Related]
14. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh. Ullrich SM; Ilyushchenko MA; Kamberov IM; Tanton TW Sci Total Environ; 2007 Aug; 381(1-3):1-16. PubMed ID: 17475310 [TBL] [Abstract][Full Text] [Related]
15. Temporal and spatial distribution of waterborne mercury in a gold miner's river. Picado F; Bengtsson G J Environ Monit; 2012 Oct; 14(10):2746-54. PubMed ID: 22951922 [TBL] [Abstract][Full Text] [Related]
16. An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on River Water quality simulation. Fan C; Ko CH; Wang WS J Environ Manage; 2009 Apr; 90(5):1824-32. PubMed ID: 19118937 [TBL] [Abstract][Full Text] [Related]
17. Use of artificial stream mesocosms to investigate mercury uptake in the South River, Virginia, USA. Brent RN; Berberich DA Arch Environ Contam Toxicol; 2014 Feb; 66(2):201-12. PubMed ID: 24253586 [TBL] [Abstract][Full Text] [Related]
18. Mercury speciation and total organic carbon in marine sediments along the Mediterranean coast of Israel. Shoham-Frider E; Azran S; Kress N Arch Environ Contam Toxicol; 2012 Nov; 63(4):495-502. PubMed ID: 22961217 [TBL] [Abstract][Full Text] [Related]
19. Steady-state mass balance model for mercury in the St. Lawrence River near Cornwall, Ontario, Canada. Lessard CR; Poulain AJ; Ridal JJ; Blais JM Environ Pollut; 2013 Mar; 174():229-35. PubMed ID: 23287073 [TBL] [Abstract][Full Text] [Related]
20. Modelling transport and transformation of mercury fractions in heavily contaminated mountain streams by coupling a GIS-based hydrological model with a mercury chemistry model. Lin Y; Larssen T; Vogt RD; Feng X; Zhang H Sci Total Environ; 2011 Oct; 409(21):4596-605. PubMed ID: 21855960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]