These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19785072)

  • 41. Anti-angiogenic strategies for cancer therapy (Review).
    Benouchan M; Colombo BM
    Int J Oncol; 2005 Aug; 27(2):563-71. PubMed ID: 16010440
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptional targeting of virus-mediated gene transfer by the human hexokinase II promoter.
    Määttä AM; Korja S; Venhoranta H; Hakkarainen T; Pirinen E; Heikkinen S; Pellinen R; Mäkinen K; Wahlfors J
    Int J Mol Med; 2006 Nov; 18(5):901-8. PubMed ID: 17016620
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monoclonal antibody therapy of ovarian cancer.
    Nicodemus CF; Berek JS
    Expert Rev Anticancer Ther; 2005 Feb; 5(1):87-96. PubMed ID: 15757441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alteration of the vascular endothelial growth factor and angiopoietins-1 and -2 pathways in transitional cell carcinomas of the urinary bladder associated with tumor progression.
    Quentin T; Schlott T; Korabiowska M; Käthei N; Zöller G; Glaser F; Kunze E
    Anticancer Res; 2004; 24(5A):2745-56. PubMed ID: 15517881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo growth of transitional and renal cell carcinoma cell lines can be suppressed by the adenovirus-mediated expression of a soluble form of vascular endothelial growth factor receptor.
    Ichikura H; Eto M; Ueno H; Harada M; Takayama K; Tokuda N; Tatsugami K; Naito S
    Oncol Rep; 2006 May; 15(5):1333-7. PubMed ID: 16596207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular signaling and the role of targeted therapies in bladder cancer.
    Black PC
    Minerva Urol Nefrol; 2012 Mar; 64(1):7-17. PubMed ID: 22402314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent advances in molecular diagnosis and therapy of gastric cancer.
    Chen J; Röcken C; Malfertheiner P; Ebert MP
    Dig Dis; 2004; 22(4):380-5. PubMed ID: 15812163
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Gene therapies for bladder cancer].
    Satoh M; Wang H; Arai Y
    Nihon Rinsho; 2005 Dec; 63 Suppl 12():548-51. PubMed ID: 16416851
    [No Abstract]   [Full Text] [Related]  

  • 49. Cancer gene therapy targeting cellular apoptosis machinery.
    Jia LT; Chen SY; Yang AG
    Cancer Treat Rev; 2012 Nov; 38(7):868-76. PubMed ID: 22800735
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advances in gene therapy for bladder cancer.
    Irie A
    Curr Gene Ther; 2003 Feb; 3(1):1-11. PubMed ID: 12553531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeted therapies in bladder cancer: an overview of in vivo research.
    van Kessel KE; Zuiverloon TC; Alberts AR; Boormans JL; Zwarthoff EC
    Nat Rev Urol; 2015 Dec; 12(12):681-94. PubMed ID: 26390971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Targeted gene therapy of autoimmune diseases: advances and prospects.
    Creusot RJ; Fathman CG; Müller-Ladner U; Tarner IH
    Expert Rev Clin Immunol; 2005 Sep; 1(3):385-404. PubMed ID: 20476990
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular aspects of bladder cancer IV: gene therapy of bladder cancer.
    Ardelt P; Böhle A
    Eur Urol; 2002 Apr; 41(4):372-80; discussion 380-1. PubMed ID: 12074806
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RAB38 promotes bladder cancer growth by promoting cell proliferation and motility.
    Tian DW; Liu SL; Jiang LM; Wu ZL; Gao J; Hu HL; Wu CL
    World J Urol; 2019 Sep; 37(9):1889-1897. PubMed ID: 30535713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synergistic effect of bladder cancer-specific oncolytic adenovirus in combination with chemotherapy.
    Li S; Wang F; Zhai Z; Fu S; Lu J; Zhang H; Guo H; Hu X; Li R; Wang Z; Rodriguez R
    Oncol Lett; 2017 Aug; 14(2):2081-2088. PubMed ID: 28781650
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MiRNA-29c regulates cell growth and invasion by targeting CDK6 in bladder cancer.
    Zhao X; Li J; Huang S; Wan X; Luo H; Wu D
    Am J Transl Res; 2015; 7(8):1382-9. PubMed ID: 26396669
    [TBL] [Abstract][Full Text] [Related]  

  • 57. microRNA response elements-regulated TRAIL expression shows specific survival-suppressing activity on bladder cancer.
    Zhao Y; Li Y; Wang L; Yang H; Wang Q; Qi H; Li S; Zhou P; Liang P; Wang Q; Li X
    J Exp Clin Cancer Res; 2013 Feb; 32(1):10. PubMed ID: 23442927
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeted inhibition of heat shock protein 90 disrupts multiple oncogenic signaling pathways, thus inducing cell cycle arrest and programmed cell death in human urinary bladder cancer cell lines.
    Karkoulis PK; Stravopodis DJ; Konstantakou EG; Voutsinas GE
    Cancer Cell Int; 2013 Feb; 13(1):11. PubMed ID: 23394616
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antitumor effects of bladder cancer-specific adenovirus carrying E1A-androgen receptor in bladder cancer.
    Zhai Z; Wang Z; Fu S; Lu J; Wang F; Li R; Zhang H; Li S; Hou Z; Wang H; Rodriguez R
    Gene Ther; 2012 Nov; 19(11):1065-74. PubMed ID: 22218302
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coexpression of activated c-Met and death receptor 5 predicts better survival in colorectal carcinoma.
    Uddin S; Hussain AR; Ahmed M; Al-Sanea N; Abduljabbar A; Ashari LH; Alhomoud S; Al-Dayel F; Bavi P; Al-Kuraya KS
    Am J Pathol; 2011 Dec; 179(6):3032-44. PubMed ID: 21978492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.