These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 197853)

  • 1. Do tricyclic antidepressants enhance adrenergic transmission?
    Frazer A; Mendels J
    Am J Psychiatry; 1977 Sep; 134(9):1040-2. PubMed ID: 197853
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of the adrenergic receptors mediating a rise in cyclic 3'-5'-adenosine monophosphate in rat cerebral cortex.
    Perkins JP; Moore MM
    J Pharmacol Exp Ther; 1973 May; 185(2):371-8. PubMed ID: 4350039
    [No Abstract]   [Full Text] [Related]  

  • 3. The cyclic AMP response to noradrenalin in young adult rat brain following post-natal injections of 6-hydroxydopamine.
    Palmer GC; Scott HR
    Experientia; 1974 May; 30(5):520-1. PubMed ID: 4365010
    [No Abstract]   [Full Text] [Related]  

  • 4. Cyclic AMP response to norepinephrine in the limbic forebrain of male and female rats: effect of desipramine.
    Mishra R; Sulser F
    Biochem Pharmacol; 1981 Nov; 30(22):3126-8. PubMed ID: 6279104
    [No Abstract]   [Full Text] [Related]  

  • 5. Do tricyclic antidepressants enhance adrenergic transmission? An update.
    Heydorn W; Frazer A; Mendels J
    Am J Psychiatry; 1980 Jan; 137(1):113-4. PubMed ID: 6243449
    [No Abstract]   [Full Text] [Related]  

  • 6. Evaluation of central adrenergic receptor signal transmissions after an antidepressant administration to the rat.
    Sapena R; Morin D; Zini R; Tillement JP
    Biochem Pharmacol; 1992 Sep; 44(6):1067-72. PubMed ID: 1329757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of lithium and antidepressants on electrophysiological and biochemical processes in the CNS.
    Schultz JE; Kopanski C
    Acta Pharmacol Toxicol (Copenh); 1985; 56 Suppl 1():43-54. PubMed ID: 2984891
    [No Abstract]   [Full Text] [Related]  

  • 8. Acceleration of desipramine-induced decrease of rat corticocerebral beta-adrenergic receptors by yohimbine.
    Wiech NL; Ursillo RC
    Commun Psychopharmacol; 1980; 4(2):95-100. PubMed ID: 6253232
    [No Abstract]   [Full Text] [Related]  

  • 9. Differential effects of the tricyclic antidepressant desipramine on the density of adrenergic receptors in juvenile and adult rats.
    Deupree JD; Reed AL; Bylund DB
    J Pharmacol Exp Ther; 2007 May; 321(2):770-6. PubMed ID: 17293562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic alpha-receptor subsensitivity after long-term antidepressant treatment.
    Crews FT; Smith CB
    Science; 1978 Oct; 202(4365):322-4. PubMed ID: 211589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurochemical properties of 3,3-dimethyl-1-[3-(methylamino) propyl]-1-phenylindan HCl (LU 3-049) and selected tricyclic antidepressants.
    Salama AI; Goldberg ME
    Arch Int Pharmacodyn Ther; 1977 Feb; 225(2):317-29. PubMed ID: 849078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta receptor binding in rat cerebellum: electrophysiological and biochemical comparison.
    Schultz JE; Siggins GR; Schocker FW; Türck M; Bloom FE
    J Pharmacol Exp Ther; 1981 Jan; 216(1):28-38. PubMed ID: 6256526
    [No Abstract]   [Full Text] [Related]  

  • 13. Stimulation of adenosine 3',5'-monophosphate formation in rat cerebral cortical slices by methoxamine: interaction with an alpha adrenergic receptor.
    Skolnick P; Daly JW
    J Pharmacol Exp Ther; 1975 May; 193(2):549-58. PubMed ID: 238025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the sensitivity of rat brain alpha 2-adrenoceptors during chronic antidepressant treatments.
    Sugrue MF
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Aug; 320(2):90-6. PubMed ID: 6289141
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of alpha-1 adrenergic receptor density and functional responsiveness in rat brain.
    Johnson RD; Iuvone PM; Minneman KP
    J Pharmacol Exp Ther; 1987 Sep; 242(3):842-9. PubMed ID: 2821227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of beta-adrenergic receptors in the cerebral cortex.
    Molinoff PB; Sporn JR; Wolfe BB; Harden TK
    Adv Cyclic Nucleotide Res; 1978; 9():465-83. PubMed ID: 208390
    [No Abstract]   [Full Text] [Related]  

  • 17. The influence of desipramine and amitriptyline on the accumulation of [3-H]noradrenaline and its two major metabolites formed from [3-H]tyrosine in the rat brain.
    Nielsen M
    J Pharm Pharmacol; 1975 Mar; 27(3):207-9. PubMed ID: 238009
    [No Abstract]   [Full Text] [Related]  

  • 18. Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain.
    Vetulani J; Sulser F
    Nature; 1975 Oct; 257(5526):495-6. PubMed ID: 170534
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of 6-hydroxydopamine on the development of the beta adrenergic receptor/adenylate cyclase system in rat cerebral cortex.
    Harden TK; Wolfe BB; Sporn JR; Poulos BK; Molinoff PB
    J Pharmacol Exp Ther; 1977 Oct; 203(1):132-43. PubMed ID: 198523
    [No Abstract]   [Full Text] [Related]  

  • 20. On the capacity of presynaptic alpha receptors to modulate norepinephrine release from slices of rat neocortex and the affinity of some agonists and antagonists for these receptors.
    Wemer J; van der Lugt JC; de Langen CD; Mulder AH
    J Pharmacol Exp Ther; 1979 Dec; 211(3):445-51. PubMed ID: 41934
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.