These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 19785438)

  • 1. Structural basis for catalytic activation of thiocyanate hydrolase involving metal-ligated cysteine modification.
    Arakawa T; Kawano Y; Katayama Y; Nakayama H; Dohmae N; Yohda M; Odaka M
    J Am Chem Soc; 2009 Oct; 131(41):14838-43. PubMed ID: 19785438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) center.
    Arakawa T; Kawano Y; Kataoka S; Katayama Y; Kamiya N; Yohda M; Odaka M
    J Mol Biol; 2007 Mar; 366(5):1497-509. PubMed ID: 17222425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiocyanate hydrolase is a cobalt-containing metalloenzyme with a cysteine-sulfinic acid ligand.
    Katayama Y; Hashimoto K; Nakayama H; Mino H; Nojiri M; Ono TA; Nyunoya H; Yohda M; Takio K; Odaka M
    J Am Chem Soc; 2006 Jan; 128(3):728-9. PubMed ID: 16417356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional expression of thiocyanate hydrolase is promoted by its activator protein, P15K.
    Kataoka S; Arakawa T; Hori S; Katayama Y; Hara Y; Matsushita Y; Nakayama H; Yohda M; Nyunoya H; Dohmae N; Maeda M; Odaka M
    FEBS Lett; 2006 Aug; 580(19):4667-72. PubMed ID: 16879822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two arginine residues in the substrate pocket predominantly control the substrate selectivity of thiocyanate hydrolase.
    Yamanaka Y; Arakawa T; Watanabe T; Namima S; Sato M; Hori S; Ohtaki A; Noguchi K; Katayama Y; Yohda M; Odaka M
    J Biosci Bioeng; 2013 Jul; 116(1):22-7. PubMed ID: 23453853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily.
    Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution X-ray molecular structure of the nitrile hydratase from Rhodococcus erythropolis AJ270 reveals posttranslational oxidation of two cysteines into sulfinic acids and a novel biocatalytic nitrile hydration mechanism.
    Song L; Wang M; Shi J; Xue Z; Wang MX; Qian S
    Biochem Biophys Res Commun; 2007 Oct; 362(2):319-24. PubMed ID: 17716629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protonation structures of Cys-sulfinic and Cys-sulfenic acids in the photosensitive nitrile hydratase revealed by Fourier transform infrared spectroscopy.
    Noguchi T; Nojiri M; Takei K; Odaka M; Kamiya N
    Biochemistry; 2003 Oct; 42(40):11642-50. PubMed ID: 14529274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase.
    Yamanaka Y; Hashimoto K; Ohtaki A; Noguchi K; Yohda M; Odaka M
    J Biol Inorg Chem; 2010 Jun; 15(5):655-65. PubMed ID: 20221653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular mechanism of sulfated carbohydrate recognition by the cysteine-rich domain of mannose receptor.
    Liu Y; Misulovin Z; Bjorkman PJ
    J Mol Biol; 2001 Jan; 305(3):481-90. PubMed ID: 11152606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of cobalt-containing nitrile hydratase.
    Miyanaga A; Fushinobu S; Ito K; Wakagi T
    Biochem Biophys Res Commun; 2001 Nov; 288(5):1169-74. PubMed ID: 11700034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microenvironment of cysteine 242 in type-1 ribosome-inactivating protein from iris.
    Hao Q; Van Damme EJ; Barre A; Sillen A; Rougé P; Engelborghs Y; Peumans WJ
    Biochem Biophys Res Commun; 2000 Aug; 275(2):481-7. PubMed ID: 10964691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and expression of a gene encoding a novel thermostable thiocyanate-degrading enzyme from a mesophilic alphaproteobacteria strain THI201.
    Hussain A; Ogawa T; Saito M; Sekine T; Nameki M; Matsushita Y; Hayashi T; Katayama Y
    Microbiology (Reading); 2013 Nov; 159(Pt 11):2294-2302. PubMed ID: 24002749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide.
    Lapko VN; Jiang XY; Smith DL; Song PS
    Biochemistry; 1998 Sep; 37(36):12526-35. PubMed ID: 9730825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway.
    Parsons JF; Calabrese K; Eisenstein E; Ladner JE
    Biochemistry; 2003 May; 42(19):5684-93. PubMed ID: 12741825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Resolved Crystallography of the Reaction Intermediate of Nitrile Hydratase: Revealing a Role for the Cysteinesulfenic Acid Ligand as a Catalytic Nucleophile.
    Yamanaka Y; Kato Y; Hashimoto K; Iida K; Nagasawa K; Nakayama H; Dohmae N; Noguchi K; Noguchi T; Yohda M; Odaka M
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10763-7. PubMed ID: 26333053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.