These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19786096)

  • 1. Proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm formation at the alkane-water interface reveals novel proteins and cellular processes involved in hexadecane assimilation.
    Vaysse PJ; Prat L; Mangenot S; Cruveiller S; Goulas P; Grimaud R
    Res Microbiol; 2009 Dec; 160(10):829-37. PubMed ID: 19786096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane--water interface by Marinobacter hydrocarbonoclasticus SP17.
    Klein B; Grossi V; Bouriat P; Goulas P; Grimaud R
    Res Microbiol; 2008 Mar; 159(2):137-44. PubMed ID: 18191384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of Marinobacter hydrocarbonoclasticus SP17 cells during initiation of biofilm formation at the alkane-water interface.
    Klein B; Bouriat P; Goulas P; Grimaud R
    Biotechnol Bioeng; 2010 Feb; 105(3):461-8. PubMed ID: 19816979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AupA and AupB Are Outer and Inner Membrane Proteins Involved in Alkane Uptake in Marinobacter hydrocarbonoclasticus SP17.
    Mounier J; Hakil F; Branchu P; Naïtali M; Goulas P; Sivadon P; Grimaud R
    mBio; 2018 Jun; 9(3):. PubMed ID: 29871914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cells dispersed from Marinobacter hydrocarbonoclasticus SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane-water interface.
    Vaysse PJ; Sivadon P; Goulas P; Grimaud R
    Environ Microbiol; 2011 Mar; 13(3):737-46. PubMed ID: 21087383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles.
    Mounier J; Camus A; Mitteau I; Vaysse PJ; Goulas P; Grimaud R; Sivadon P
    FEMS Microbiol Ecol; 2014 Dec; 90(3):816-31. PubMed ID: 25318592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome sequence of the marine bacterium Marinobacter hydrocarbonoclasticus SP17, which forms biofilms on hydrophobic organic compounds.
    Grimaud R; Ghiglione JF; Cagnon C; Lauga B; Vaysse PJ; Rodriguez-Blanco A; Mangenot S; Cruveiller S; Barbe V; Duran R; Wu LF; Talla E; Bonin P; Michotey V
    J Bacteriol; 2012 Jul; 194(13):3539-40. PubMed ID: 22689231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The extracellular matrix of the oleolytic biofilms of Marinobacter hydrocarbonoclasticus comprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids.
    Ennouri H; d'Abzac P; Hakil F; Branchu P; Naïtali M; Lomenech AM; Oueslati R; Desbrières J; Sivadon P; Grimaud R
    Environ Microbiol; 2017 Jan; 19(1):159-173. PubMed ID: 27727521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5.
    Grossi V; Yakimov MM; Al Ali B; Tapilatu Y; Cuny P; Goutx M; La Cono V; Giuliano L; Tamburini C
    Environ Microbiol; 2010 Jul; 12(7):2020-33. PubMed ID: 20406283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of temperature on
    Branchu P; Canette A; Medina Fernandez S; Mounier J; Meylheuc T; Briandet R; Grimaud R; Naïtali M
    Microbiology (Reading); 2017 May; 163(5):669-677. PubMed ID: 28535844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization.
    Sabirova JS; Ferrer M; Regenhardt D; Timmis KN; Golyshin PN
    J Bacteriol; 2006 Jun; 188(11):3763-73. PubMed ID: 16707669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia.
    Pham TK; Roy S; Noirel J; Douglas I; Wright PC; Stafford GP
    Proteomics; 2010 Sep; 10(17):3130-41. PubMed ID: 20806225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane.
    Gallo G; Lo Piccolo L; Renzone G; La Rosa R; Scaloni A; Quatrini P; Puglia AM
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1289-301. PubMed ID: 22526801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative subproteome analyses of planktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulase-negative Staphylococcus in biofilm.
    Planchon S; Desvaux M; Chafsey I; Chambon C; Leroy S; Hébraud M; Talon R
    J Proteome Res; 2009 Apr; 8(4):1797-809. PubMed ID: 19253936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis.
    Serra DO; Lücking G; Weiland F; Schulz S; Görg A; Yantorno OM; Ehling-Schulz M
    Proteomics; 2008 Dec; 8(23-24):4995-5010. PubMed ID: 18972542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons.
    de Carvalho CC; Wick LY; Heipieper HJ
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):311-20. PubMed ID: 19096838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome analysis of Desulfovibrio vulgaris grown in planktonic culture and mature biofilm on a steel surface.
    Zhang W; Culley DE; Nie L; Scholten JC
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):447-57. PubMed ID: 17571259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of rpoS deletion on the proteome of Escherichia coli grown planktonically and as biofilm.
    Collet A; Cosette P; Beloin C; Ghigo JM; Rihouey C; Lerouge P; Junter GA; Jouenne T
    J Proteome Res; 2008 Nov; 7(11):4659-69. PubMed ID: 18826300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes.
    Sabirova JS; Becker A; Lünsdorf H; Nicaud JM; Timmis KN; Golyshin PN
    FEMS Microbiol Lett; 2011 Jun; 319(2):160-8. PubMed ID: 21470299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria.
    Roslev P; Larsen MB; Jørgensen D; Hesselsoe M
    J Microbiol Methods; 2004 Dec; 59(3):381-93. PubMed ID: 15488281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.