These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 19786106)

  • 1. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution.
    Roebroeck A; Formisano E; Goebel R
    Neuroimage; 2011 Sep; 58(2):296-302. PubMed ID: 19786106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-brain auto-regressive modeling (FARM) using fMRI.
    Garg R; Cecchi GA; Rao AR
    Neuroimage; 2011 Sep; 58(2):416-41. PubMed ID: 21439388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning effective brain connectivity with dynamic Bayesian networks.
    Rajapakse JC; Zhou J
    Neuroimage; 2007 Sep; 37(3):749-60. PubMed ID: 17644415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear connectivity by Granger causality.
    Marinazzo D; Liao W; Chen H; Stramaglia S
    Neuroimage; 2011 Sep; 58(2):330-8. PubMed ID: 20132895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study of effective connectivity based on dynamic causal modeling in subtraction calculation task].
    Zhang Y; Chen C; Lu G; Zhang Z; Yu H; Huang W; Chen Z; Zhong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Oct; 26(5):931-5, 940. PubMed ID: 19947462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint EEG/fMRI state space model for the detection of directed interactions in human brains--a simulation study.
    Lenz M; Musso M; Linke Y; Tüscher O; Timmer J; Weiller C; Schelter B
    Physiol Meas; 2011 Nov; 32(11):1725-36. PubMed ID: 22027197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fMRI connectivity, meaning and empiricism Comments on: Roebroeck et al. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution.
    David O
    Neuroimage; 2011 Sep; 58(2):306-9; author reply 310-1. PubMed ID: 19892020
    [No Abstract]   [Full Text] [Related]  

  • 10. Investigating the neural basis for fMRI-based functional connectivity in a blocked design: application to interregional correlations and psycho-physiological interactions.
    Kim J; Horwitz B
    Magn Reson Imaging; 2008 Jun; 26(5):583-93. PubMed ID: 18191524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining neurocognitive networks in the BOLD new world of computed connectivity.
    Mesulam M
    Neuron; 2009 Apr; 62(1):1-3. PubMed ID: 19376059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality.
    Sato JR; Junior EA; Takahashi DY; de Maria Felix M; Brammer MJ; Morettin PA
    Neuroimage; 2006 May; 31(1):187-96. PubMed ID: 16434214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling.
    Seth AK; Chorley P; Barnett LC
    Neuroimage; 2013 Jan; 65():540-55. PubMed ID: 23036449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of large-scale networks in the brain using fMRI.
    Bellec P; Perlbarg V; Jbabdi S; Pélégrini-Issac M; Anton JL; Doyon J; Benali H
    Neuroimage; 2006 Feb; 29(4):1231-43. PubMed ID: 16246590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.
    Kang J; Wang L; Yan C; Wang J; Liang X; He Y
    Neuroimage; 2011 Jun; 56(3):1222-34. PubMed ID: 21420500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity.
    Ferrarini L; Veer IM; van Lew B; Oei NY; van Buchem MA; Reiber JH; Rombouts SA; Milles J
    Neuroimage; 2011 Jun; 56(3):1453-62. PubMed ID: 21338693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain network interactions in auditory, visual and linguistic processing.
    Horwitz B; Braun AR
    Brain Lang; 2004 May; 89(2):377-84. PubMed ID: 15068921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic graphical models for effective connectivity extraction in the brain using FMRI data.
    Ali Safari M; Mohammadbeigi M
    Stud Health Technol Inform; 2012; 180():133-7. PubMed ID: 22874167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of neural activity based on fMRI data: a simulation study.
    Hemmelmann D; Leistritz L; Witte H; Galicki M
    J Physiol Paris; 2009 Nov; 103(6):353-60. PubMed ID: 19497366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Networks, noise and models: reconceptualizing the brain as a complex, distributed system.
    Breakspear M; McIntosh AR
    Neuroimage; 2011 Sep; 58(2):293-5. PubMed ID: 21447393
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.