These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19786321)

  • 1. Modeling mercury speciation in combustion flue gases using support vector machine: prediction and evaluation.
    Zhao B; Zhang Z; Jin J; Pan WP
    J Hazard Mater; 2010 Feb; 174(1-3):244-50. PubMed ID: 19786321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust framework to predict mercury speciation in combustion flue gases.
    Ticknor JL; Hsu-Kim H; Deshusses MA
    J Hazard Mater; 2014 Jan; 264():380-5. PubMed ID: 24316249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury emissions from selected stationary combustion sources in Korea.
    Jun Lee S; Seo YC; Jurng J; Hong JH; Park JW; Hyun JE; Gyu Lee T
    Sci Total Environ; 2004 Jun; 325(1-3):155-61. PubMed ID: 15144786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive evaluation of the influence of air combustion and oxy-fuel combustion flue gas constituents on Hg(0) re-emission in WFGD systems.
    Ochoa-González R; Díaz-Somoano M; Martínez-Tarazona MR
    J Hazard Mater; 2014 Jul; 276():157-63. PubMed ID: 24887118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-stage system to remove mercury and dioxins in flue gases.
    Hylander LD; Sollenberg H; Westas H
    Sci Total Environ; 2003 Mar; 304(1-3):137-44. PubMed ID: 12663178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.
    Li H; Wu CY; Li Y; Zhang J
    Environ Sci Technol; 2011 Sep; 45(17):7394-400. PubMed ID: 21770402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation and stabilization of elemental mercury from coal-fired flue gas by sulfur monobromide.
    Qu Z; Yan N; Liu P; Guo Y; Jia J
    Environ Sci Technol; 2010 May; 44(10):3889-94. PubMed ID: 20408537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of mercury capture by sorbent injection using a simplified model.
    Zhao B; Zhang Z; Jin J; Pan WP
    J Hazard Mater; 2009 Oct; 170(2-3):1179-85. PubMed ID: 19541417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory investigation of Hg release from flue gas desulfurization products.
    Gustin M; Ladwig K
    Environ Sci Technol; 2010 May; 44(10):4012-8. PubMed ID: 20420364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical study of properties and reactions involving arsenic and selenium compounds present in coal combustion flue gases.
    Urban DR; Wilcox J
    J Phys Chem A; 2006 May; 110(17):5847-52. PubMed ID: 16640380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine.
    Fatemi MH; Gharaghani S
    Bioorg Med Chem; 2007 Dec; 15(24):7746-54. PubMed ID: 17870538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas.
    Chi Y; Yan N; Qu Z; Qiao S; Jia J
    J Hazard Mater; 2009 Jul; 166(2-3):776-81. PubMed ID: 19153004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of freeboard extension on co-combustion of coal and olive cake in a fluidized bed combustor.
    Akpulat O; Varol M; Atimtay AT
    Bioresour Technol; 2010 Aug; 101(15):6177-84. PubMed ID: 20347293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thief process for mercury removal from flue gas.
    Granite EJ; Freeman MC; Hargis RA; O'Dowd WJ; Pennline HW
    J Environ Manage; 2007 Sep; 84(4):628-34. PubMed ID: 16959396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F
    J Environ Monit; 2004 Oct; 6(10):792-8. PubMed ID: 15480492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of mercury vapor emissions from combustion flue gas.
    Yan R; Liang DT; Tay JH
    Environ Sci Pollut Res Int; 2003; 10(6):399-407. PubMed ID: 14690030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the flue gas cleaning system of an RDF incineration power plant.
    Jannelli E; Minutillo M
    Waste Manag; 2007; 27(5):684-90. PubMed ID: 16750619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends.
    Lu WZ; Wang WJ
    Chemosphere; 2005 Apr; 59(5):693-701. PubMed ID: 15792667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.