These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19786622)

  • 1. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a "gene-to-phenotype" modeling approach.
    Chenu K; Chapman SC; Tardieu F; McLean G; Welcker C; Hammer GL
    Genetics; 2009 Dec; 183(4):1507-23. PubMed ID: 19786622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits.
    Messmer R; Fracheboud Y; Bänziger M; Vargas M; Stamp P; Ribaut JM
    Theor Appl Genet; 2009 Sep; 119(5):913-30. PubMed ID: 19597726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize green leaf area index dynamics: genetic basis of a new secondary trait for grain yield in optimal and drought conditions.
    Blancon J; Buet C; Dubreuil P; Tixier MH; Baret F; Praud S
    Theor Appl Genet; 2024 Mar; 137(3):68. PubMed ID: 38441678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments.
    Semagn K; Beyene Y; Warburton ML; Tarekegne A; Mugo S; Meisel B; Sehabiague P; Prasanna BM
    BMC Genomics; 2013 May; 14():313. PubMed ID: 23663209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel.
    Zhang X; Warburton ML; Setter T; Liu H; Xue Y; Yang N; Yan J; Xiao Y
    Theor Appl Genet; 2016 Aug; 129(8):1449-63. PubMed ID: 27121008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance.
    Almeida GD; Makumbi D; Magorokosho C; Nair S; Borém A; Ribaut JM; Bänziger M; Prasanna BM; Crossa J; Babu R
    Theor Appl Genet; 2013 Mar; 126(3):583-600. PubMed ID: 23124431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of Anthesis-Silking Interval to water deficit.
    Welcker C; Boussuge B; Bencivenni C; Ribaut JM; Tardieu F
    J Exp Bot; 2007; 58(2):339-49. PubMed ID: 17130185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative trait loci associated with constitutive traits control water use in pearl millet [Pennisetum glaucum (L.) R. Br].
    Aparna K; Nepolean T; Srivastsava RK; Kholová J; Rajaram V; Kumar S; Rekha B; Senthilvel S; Hash CT; Vadez V
    Plant Biol (Stuttg); 2015 Sep; 17(5):1073-84. PubMed ID: 25946470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dealing with the genotype x environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters.
    Reymond M; Muller B; Tardieu F
    J Exp Bot; 2004 Nov; 55(407):2461-72. PubMed ID: 15286140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-Quantitative Trait Loci Analysis and Candidate Gene Mining for Drought Tolerance-Associated Traits in Maize (
    Li R; Wang Y; Li D; Guo Y; Zhou Z; Zhang M; Zhang Y; Würschum T; Liu W
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of genetic diversity and marker-trait to improve drought tolerance in rice (Oryza sativa L.).
    Ghazy MI; Salem KFM; Sallam A
    Mol Biol Rep; 2021 Jan; 48(1):157-170. PubMed ID: 33300089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral Phenotyping of Physiological and Anatomical Leaf Traits Related with Maize Water Status.
    Cotrozzi L; Peron R; Tuinstra MR; Mickelbart MV; Couture JJ
    Plant Physiol; 2020 Nov; 184(3):1363-1377. PubMed ID: 32907885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice.
    Ding X; Li X; Xiong L
    Theor Appl Genet; 2011 Sep; 123(5):815-26. PubMed ID: 21681490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of Drought Tolerant Maize Hybrids Using Path Coefficient Analysis and Selection Index.
    Dao A; Sanou J; V S Traore E; Gracen V; Danquah EY
    Pak J Biol Sci; 2017; 20(3):132-139. PubMed ID: 29023004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QTLs for the elongation of axile and lateral roots of maize in response to low water potential.
    Ruta N; Liedgens M; Fracheboud Y; Stamp P; Hund A
    Theor Appl Genet; 2010 Feb; 120(3):621-31. PubMed ID: 19847387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative genetics and functional-structural plant growth models: simulation of quantitative trait loci detection for model parameters and application to potential yield optimization.
    Letort V; Mahe P; Cournède PH; de Reffye P; Courtois B
    Ann Bot; 2008 May; 101(8):1243-54. PubMed ID: 17766844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk analysis by resequencing and RNA-seq identifies candidate genes for maintaining leaf water content under water deficit in maize.
    Zhang F; Zhang J; Ma Z; Xia L; Wang X; Zhang L; Ding Y; Qi J; Mu X; Zhao F; Ji T; Tang B
    Physiol Plant; 2021 Dec; 173(4):1935-1945. PubMed ID: 34494286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis.
    Venuprasad R; Dalid CO; Del Valle M; Zhao D; Espiritu M; Sta Cruz MT; Amante M; Kumar A; Atlin GN
    Theor Appl Genet; 2009 Dec; 120(1):177-90. PubMed ID: 19841886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.
    Messina CD; Podlich D; Dong Z; Samples M; Cooper M
    J Exp Bot; 2011 Jan; 62(3):855-68. PubMed ID: 21041371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.