These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 19787035)

  • 1. Exploration of uncharted regions of the protein universe.
    Jaroszewski L; Li Z; Krishna SS; Bakolitsa C; Wooley J; Deacon AM; Wilson IA; Godzik A
    PLoS Biol; 2009 Sep; 7(9):e1000205. PubMed ID: 19787035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR in structural genomics to increase structural coverage of the protein universe: Delivered by Prof. Kurt Wüthrich on 7 July 2013 at the 38th FEBS Congress in St. Petersburg, Russia.
    Serrano P; Dutta SK; Proudfoot A; Mohanty B; Susac L; Martin B; Geralt M; Jaroszewski L; Godzik A; Elsliger M; Wilson IA; Wüthrich K
    FEBS J; 2016 Nov; 283(21):3870-3881. PubMed ID: 27154589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the protein universe.
    Levitt M
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):11079-84. PubMed ID: 19541617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De-DUFing the DUFs: Deciphering distant evolutionary relationships of Domains of Unknown Function using sensitive homology detection methods.
    Mudgal R; Sandhya S; Chandra N; Srinivasan N
    Biol Direct; 2015 Jul; 10():38. PubMed ID: 26228684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive update of the sequence and structure classification of kinases.
    Cheek S; Ginalski K; Zhang H; Grishin NV
    BMC Struct Biol; 2005 Mar; 5():6. PubMed ID: 15771780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The size distribution of protein families within different types of folds.
    Liu X; Lv B; Guo W
    Biochem Biophys Res Commun; 2011 Mar; 406(2):218-22. PubMed ID: 21303659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of DinB from Geobacillus stearothermophilus: a representative of a unique four-helix-bundle superfamily.
    Cooper DR; Grelewska K; Kim CY; Joachimiak A; Derewenda ZS
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Mar; 66(Pt 3):219-24. PubMed ID: 20208147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring dynamics of protein structure determination and homology-based prediction to estimate the number of superfamilies and folds.
    Sadreyev RI; Grishin NV
    BMC Struct Biol; 2006 Mar; 6():6. PubMed ID: 16549009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein folds: molecular systematics in three dimensions.
    Zhang C; DeLisi C
    Cell Mol Life Sci; 2001 Jan; 58(1):72-9. PubMed ID: 11229818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic interaction networks in the core of protein domains and their native folds.
    Soundararajan V; Raman R; Raguram S; Sasisekharan V; Sasisekharan R
    PLoS One; 2010 Feb; 5(2):e9391. PubMed ID: 20186337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expectations from structural genomics revisited: an analysis of structural genomics targets.
    Saqi MA; Wild DL
    Am J Pharmacogenomics; 2005; 5(5):339-42. PubMed ID: 16196503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The challenge of increasing Pfam coverage of the human proteome.
    Mistry J; Coggill P; Eberhardt RY; Deiana A; Giansanti A; Finn RD; Bateman A; Punta M
    Database (Oxford); 2013; 2013():bat023. PubMed ID: 23603847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a motif-based topology-independent structure comparison method to identify evolutionarily related folds.
    Dybas JM; Fiser A
    Proteins; 2016 Dec; 84(12):1859-1874. PubMed ID: 27671894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PconsFam: An Interactive Database of Structure Predictions of Pfam Families.
    Lamb J; Jarmolinska AI; Michel M; Menéndez-Hurtado D; Sulkowska JI; Elofsson A
    J Mol Biol; 2019 Jun; 431(13):2442-2448. PubMed ID: 30796988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray structures of two proteins belonging to Pfam DUF178 revealed unexpected structural similarity to the DUF191 Pfam family.
    Tyagi R; Burley SK; Swaminathan S
    BMC Struct Biol; 2007 Oct; 7():62. PubMed ID: 17908300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representing and comparing protein folds and fold families using three-dimensional shape-density representations.
    Mavridis L; Ghoorah AW; Venkatraman V; Ritchie DW
    Proteins; 2012 Feb; 80(2):530-45. PubMed ID: 22081520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches.
    Knizewski L; Kinch LN; Grishin NV; Rychlewski L; Ginalski K
    BMC Struct Biol; 2007 Jun; 7():40. PubMed ID: 17584917
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.