These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19787067)

  • 1. The brain atlas concordance problem: quantitative comparison of anatomical parcellations.
    Bohland JW; Bokil H; Allen CB; Mitra PP
    PLoS One; 2009 Sep; 4(9):e7200. PubMed ID: 19787067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NeuARt II system: a viewing tool for neuroanatomical data based on published neuroanatomical atlases.
    Burns GA; Cheng WC; Thompson RH; Swanson LW
    BMC Bioinformatics; 2006 Dec; 7():531. PubMed ID: 17166289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature.
    Destrieux C; Fischl B; Dale A; Halgren E
    Neuroimage; 2010 Oct; 53(1):1-15. PubMed ID: 20547229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain.
    Young DM; Fazel Darbandi S; Schwartz G; Bonzell Z; Yuruk D; Nojima M; Gole LC; Rubenstein JL; Yu W; Sanders SJ
    Elife; 2021 Feb; 10():. PubMed ID: 33570495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space).
    Frey S; Pandya DN; Chakravarty MM; Bailey L; Petrides M; Collins DL
    Neuroimage; 2011 Apr; 55(4):1435-42. PubMed ID: 21256229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.
    Aljabar P; Heckemann RA; Hammers A; Hajnal JV; Rueckert D
    Neuroimage; 2009 Jul; 46(3):726-38. PubMed ID: 19245840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A whole brain fMRI atlas generated via spatially constrained spectral clustering.
    Craddock RC; James GA; Holtzheimer PE; Hu XP; Mayberg HS
    Hum Brain Mapp; 2012 Aug; 33(8):1914-28. PubMed ID: 21769991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.
    Fan L; Li H; Zhuo J; Zhang Y; Wang J; Chen L; Yang Z; Chu C; Xie S; Laird AR; Fox PT; Eickhoff SB; Yu C; Jiang T
    Cereb Cortex; 2016 Aug; 26(8):3508-26. PubMed ID: 27230218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SRI24 multichannel atlas of normal adult human brain structure.
    Rohlfing T; Zahr NM; Sullivan EV; Pfefferbaum A
    Hum Brain Mapp; 2010 May; 31(5):798-819. PubMed ID: 20017133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a neuroanatomical shape complex atlas from 3D MRI brain structures.
    Chen T; Rangarajan A; Eisenschenk SJ; Vemuri BC
    Neuroimage; 2012 Apr; 60(3):1778-87. PubMed ID: 22305953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unbiased atlas formation via large deformations metric mapping.
    Lorenzen P; Davis B; Joshi S
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):411-8. PubMed ID: 16685986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic brain atlas encoding using Bayesian inference.
    Van Leemput K
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):704-11. PubMed ID: 17354952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A digital pediatric brain structure atlas from T1-weighted MR images.
    Shan ZY; Parra C; Ji Q; Ogg RJ; Zhang Y; Laningham FH; Reddick WE
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):332-9. PubMed ID: 17354789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating brain parcellations using the distance-controlled boundary coefficient.
    Zhi D; King M; Hernandez-Castillo CR; Diedrichsen J
    Hum Brain Mapp; 2022 Aug; 43(12):3706-3720. PubMed ID: 35451538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification.
    Shen X; Tokoglu F; Papademetris X; Constable RT
    Neuroimage; 2013 Nov; 82():403-15. PubMed ID: 23747961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finer parcellation reveals detailed correlational structure of resting-state fMRI signals.
    Dornas JV; Braun J
    J Neurosci Methods; 2018 Jan; 294():15-33. PubMed ID: 29100837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe.
    Hammers A; Allom R; Koepp MJ; Free SL; Myers R; Lemieux L; Mitchell TN; Brooks DJ; Duncan JS
    Hum Brain Mapp; 2003 Aug; 19(4):224-47. PubMed ID: 12874777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and validation of mean shape atlas templates for atlas-based brain image segmentation.
    Wang Q; Seghers D; D'Agostino E; Maes F; Vandermeulen D; Suetens P; Hammers A
    Inf Process Med Imaging; 2005; 19():689-700. PubMed ID: 17354736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation.
    Shi F; Yap PT; Fan Y; Gilmore JH; Lin W; Shen D
    Neuroimage; 2010 Jun; 51(2):684-93. PubMed ID: 20171290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.