BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19787341)

  • 21. Natural products such as adhesives in oil paintings.
    Russo MV; Avino P
    Nat Prod Res; 2019 Apr; 33(7):956-969. PubMed ID: 26732127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced discriminating criteria for natural organic substances of cultural heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures.
    Daher C; Bellot-Gurlet L; Le Hô AS; Paris C; Regert M
    Talanta; 2013 Oct; 115():540-7. PubMed ID: 24054630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of MidIR fibre optic reflectance: detection limit, reproducibility and binary mixture discrimination.
    Sessa C; Bagán H; García JF
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():617-28. PubMed ID: 23872021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-site contactless surface analysis of modern paintings from Galleria Nazionale (Rome) by reflectance FTIR and Raman spectroscopies.
    Mancini D; Percot A; Bellot-Gurlet L; Colomban P; Carnazza P
    Talanta; 2021 May; 227():122159. PubMed ID: 33714464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of the GC-MS determination of the palmitic-stearic acid ratio for the characterisation of drying oil in painting: La Encarnación by Alonso Cano as a case study.
    Manzano E; Rodriguez-Simón LR; Navas N; Checa-Moreno R; Romero-Gámez M; Capitan-Vallvey LF
    Talanta; 2011 May; 84(4):1148-54. PubMed ID: 21530791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preliminary study of UV ageing process of proteinaceous paint binder by FT-IR and principal component analysis.
    Manzano E; Navas N; Checa-Moreno R; Rodriguez-Simón L; Capitán-Vallvey LF
    Talanta; 2009 Mar; 77(5):1724-31. PubMed ID: 19159789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural examination of easel paintings with optical coherence tomography.
    Targowski P; Iwanicka M; Tymińska-Widmer L; Sylwestrzak M; Kwiatkowska EA
    Acc Chem Res; 2010 Jun; 43(6):826-36. PubMed ID: 20043663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.
    Manley M
    Chem Soc Rev; 2014 Dec; 43(24):8200-14. PubMed ID: 25156745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non invasive analysis of miniature paintings: proposal for an analytical protocol.
    Aceto M; Agostino A; Fenoglio G; Gulmini M; Bianco V; Pellizzi E
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():352-9. PubMed ID: 22391225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advantages of the use of SR-FT-IR microspectroscopy: applications to cultural heritage.
    Salvadó N; Butí S; Tobin MJ; Pantos E; Prag AJ; Pradell T
    Anal Chem; 2005 Jun; 77(11):3444-51. PubMed ID: 15924374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media.
    Lluveras A; Bonaduce I; Andreotti A; Colombini MP
    Anal Chem; 2010 Jan; 82(1):376-86. PubMed ID: 19954203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunodetection of proteins in ancient paint media.
    Cartechini L; Vagnini M; Palmieri M; Pitzurra L; Mello T; Mazurek J; Chiari G
    Acc Chem Res; 2010 Jun; 43(6):867-76. PubMed ID: 20438070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience.
    Brunetti B; Miliani C; Rosi F; Doherty B; Monico L; Romani A; Sgamellotti A
    Top Curr Chem (Cham); 2016 Feb; 374(1):10. PubMed ID: 27572993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mid and Near-Infrared Reflection Spectral Database of Natural Organic Materials in the Cultural Heritage Field.
    Invernizzi C; Rovetta T; Licchelli M; Malagodi M
    Int J Anal Chem; 2018; 2018():7823248. PubMed ID: 30364094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-analytical study of techniques and palettes of wall paintings of the monastery of Žiča, Serbia.
    Holclajtner-Antunović I; Stojanović-Marić M; Bajuk-Bogdanović D; Žikić R; Uskoković-Marković S
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():78-88. PubMed ID: 26654964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lorenzo Lotto's painting materials: an integrated diagnostic approach.
    Amadori ML; Poldi G; Barcelli S; Baraldi P; Berzioli M; Casoli A; Marras S; Pojana G; Villa GC
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jul; 164():110-22. PubMed ID: 27089184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reflectance Spectroscopy as a Novel Tool for Thickness Measurements of Paint Layers.
    Dal Fovo A; Martínez-Weinbaum M; Oujja M; Castillejo M; Fontana R
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials.
    Prati S; Joseph E; Sciutto G; Mazzeo R
    Acc Chem Res; 2010 Jun; 43(6):792-801. PubMed ID: 20476733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FTIR imaging investigation in MIR and in an enlarged MIR-NIR spectral range.
    Poli T; Chiantore O; Giovagnoli A; Piccirillo A
    Anal Bioanal Chem; 2012 Mar; 402(9):2977-84. PubMed ID: 22327966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A non-invasive XRF study supported by multivariate statistical analysis and reflectance FTIR to assess the composition of modern painting materials.
    Rosi F; Burnstock A; Van den Berg KJ; Miliani C; Brunetti BG; Sgamellotti A
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1655-62. PubMed ID: 18674961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.