These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 19787350)
1. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Lee SW; Im J; Dispirito AA; Bodrossy L; Barcelona MJ; Semrau JD Appl Microbiol Biotechnol; 2009 Nov; 85(2):389-403. PubMed ID: 19787350 [TBL] [Abstract][Full Text] [Related]
2. Field application of nitrogen and phenylacetylene to mitigate greenhouse gas emissions from landfill cover soils: effects on microbial community structure. Im J; Lee SW; Bodrossy L; Barcelona MJ; Semrau JD Appl Microbiol Biotechnol; 2011 Jan; 89(1):189-200. PubMed ID: 20809077 [TBL] [Abstract][Full Text] [Related]
3. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Kolb S; Knief C; Dunfield PF; Conrad R Environ Microbiol; 2005 Aug; 7(8):1150-61. PubMed ID: 16011752 [TBL] [Abstract][Full Text] [Related]
4. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Angel R; Conrad R Environ Microbiol; 2009 Oct; 11(10):2598-610. PubMed ID: 19601957 [TBL] [Abstract][Full Text] [Related]
5. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. Cébron A; Bodrossy L; Chen Y; Singer AC; Thompson IP; Prosser JI; Murrell JC FEMS Microbiol Ecol; 2007 Oct; 62(1):12-23. PubMed ID: 17714486 [TBL] [Abstract][Full Text] [Related]
6. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Jung J; Yeom J; Kim J; Han J; Lim HS; Park H; Hyun S; Park W Res Microbiol; 2011 Dec; 162(10):1018-26. PubMed ID: 21839168 [TBL] [Abstract][Full Text] [Related]
7. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Chen Y; Dumont MG; Cébron A; Murrell JC Environ Microbiol; 2007 Nov; 9(11):2855-69. PubMed ID: 17922768 [TBL] [Abstract][Full Text] [Related]
8. Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Hoffmann T; Horz HP; Kemnitz D; Conrad R Syst Appl Microbiol; 2002 Aug; 25(2):267-74. PubMed ID: 12353882 [TBL] [Abstract][Full Text] [Related]
9. Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. De Corte D; Yokokawa T; Varela MM; Agogué H; Herndl GJ ISME J; 2009 Feb; 3(2):147-58. PubMed ID: 18818711 [TBL] [Abstract][Full Text] [Related]
10. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. Mertens J; Broos K; Wakelin SA; Kowalchuk GA; Springael D; Smolders E ISME J; 2009 Aug; 3(8):916-23. PubMed ID: 19387487 [TBL] [Abstract][Full Text] [Related]
11. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Nicol GW; Leininger S; Schleper C; Prosser JI Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610 [TBL] [Abstract][Full Text] [Related]
12. A field trial of nutrient stimulation of methanotrophs to reduce greenhouse gas emissions from landfill cover soils. Lizik W; Im J; Semrau JD; Barcelona MJ J Air Waste Manag Assoc; 2013 Mar; 63(3):300-9. PubMed ID: 23556240 [TBL] [Abstract][Full Text] [Related]
13. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Jia Z; Conrad R Environ Microbiol; 2009 Jul; 11(7):1658-71. PubMed ID: 19236445 [TBL] [Abstract][Full Text] [Related]
14. The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Knief C; Kolb S; Bodelier PL; Lipski A; Dunfield PF Environ Microbiol; 2006 Feb; 8(2):321-33. PubMed ID: 16423018 [TBL] [Abstract][Full Text] [Related]
16. Landfill intermediate cover soil microbiomes and their potential for mitigating greenhouse gas emissions revealed through metagenomics. Lienhart PH; Rohra V; Clement C; Toppen LC; DeCola AC; Rizzo DM; Scarborough MJ Sci Total Environ; 2024 May; 925():171697. PubMed ID: 38492594 [TBL] [Abstract][Full Text] [Related]
17. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771 [TBL] [Abstract][Full Text] [Related]
18. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. Offre P; Prosser JI; Nicol GW FEMS Microbiol Ecol; 2009 Oct; 70(1):99-108. PubMed ID: 19656195 [TBL] [Abstract][Full Text] [Related]
19. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. Stres B; Danevcic T; Pal L; Fuka MM; Resman L; Leskovec S; Hacin J; Stopar D; Mahne I; Mandic-Mulec I FEMS Microbiol Ecol; 2008 Oct; 66(1):110-22. PubMed ID: 18710395 [TBL] [Abstract][Full Text] [Related]
20. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Shen JP; Zhang LM; Zhu YG; Zhang JB; He JZ Environ Microbiol; 2008 Jun; 10(6):1601-11. PubMed ID: 18336563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]