These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 1978775)
1. Role of elastase and lysyl oxidase activity in spontaneous rupture of internal elastic lamina in rats. Osborne-Pellegrin MJ; Farjanel J; Hornebeck W Arteriosclerosis; 1990; 10(6):1136-46. PubMed ID: 1978775 [TBL] [Abstract][Full Text] [Related]
2. Spontaneous rupture of the internal elastic lamina in the rat: the manifestation of a genetically determined factor which may be linked to vascular fragility. Capdeville M; Coutard M; Osborne-Pellegrin MJ Blood Vessels; 1989; 26(4):197-212. PubMed ID: 2575918 [TBL] [Abstract][Full Text] [Related]
3. Aortic elastin and collagen content and synthesis in two strains of rats with different susceptibilities to rupture of the internal elastic lamina. Sauvage M; Jacob MP; Osborne-Pellegrin M J Vasc Res; 1997; 34(2):126-36. PubMed ID: 9167645 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of the aortic elastic network and related phenotypes in seven inbred rat strains. Behmoaras J; Osborne-Pellegrin M; Gauguier D; Jacob MP Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H769-77. PubMed ID: 15471977 [TBL] [Abstract][Full Text] [Related]
5. Differential expression of lysyl oxidases LOXL1 and LOX during growth and aging suggests specific roles in elastin and collagen fiber remodeling in rat aorta. Behmoaras J; Slove S; Seve S; Vranckx R; Sommer P; Jacob MP Rejuvenation Res; 2008 Oct; 11(5):883-9. PubMed ID: 18803461 [TBL] [Abstract][Full Text] [Related]
6. Changes in aortic stiffness related to elastic fiber network anomalies in the Brown Norway rat during maturation and aging. Osborne-Pellegrin M; Labat C; Mercier N; Challande P; Lacolley P Am J Physiol Heart Circ Physiol; 2010 Jul; 299(1):H144-52. PubMed ID: 20435849 [TBL] [Abstract][Full Text] [Related]
7. Protection of the arterial internal elastic lamina by inhibition of the renin-angiotensin system in the rat. Huang W; Alhenc Gelas F; Osborne-Pellegrin MJ Circ Res; 1998 May; 82(8):879-90. PubMed ID: 9576107 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the effects of semicarbazide and beta-aminopropionitrile on the arterial extracellular matrix in the Brown Norway rat. Mercier N; Kakou A; Challande P; Lacolley P; Osborne-Pellegrin M Toxicol Appl Pharmacol; 2009 Sep; 239(3):258-67. PubMed ID: 19524603 [TBL] [Abstract][Full Text] [Related]
9. Isolation and partial characterization of an elastase-type enzyme from human arterial wall by lima-bean trypsin inhibitor affinity chromatography. Bellon G; Ooyama T; Hornebeck W; Robert L Artery; 1980; 7(4):290-302. PubMed ID: 6908522 [TBL] [Abstract][Full Text] [Related]
11. Protease inhibitor 15, a candidate gene for abdominal aortic internal elastic lamina ruptures in the rat. Falak S; Schafer S; Baud A; Hummel O; Schulz H; Gauguier D; Hubner N; Osborne-Pellegrin M Physiol Genomics; 2014 Jun; 46(12):418-28. PubMed ID: 24790086 [TBL] [Abstract][Full Text] [Related]
12. Localisation of endothelin-1 in rat aortae, the relationship to flow and elastic tissue tears. Jones GT; van Rij AM J Vasc Res; 1996; 33(5):425-31. PubMed ID: 8862148 [TBL] [Abstract][Full Text] [Related]
13. Alterations of elastin and elastase-like activities in aortae of diabetic rats. Kwan CY; Wang RR; Beazley JS; Lee RM Biochim Biophys Acta; 1988 Nov; 967(2):322-5. PubMed ID: 3191158 [TBL] [Abstract][Full Text] [Related]
14. Genetic susceptibility to experimental cerebral aneurysm formation in the rat. Coutard M; Osborne-Pellegrin M Stroke; 1997 May; 28(5):1035-41; discussion 1042. PubMed ID: 9158647 [TBL] [Abstract][Full Text] [Related]
15. Lysyl oxidase activity and elastin/glycosaminoglycan interactions in growing chick and rat aortas. Fornieri C; Baccarani-Contri M; Quaglino D; Pasquali-Ronchetti I J Cell Biol; 1987 Sep; 105(3):1463-9. PubMed ID: 2888772 [TBL] [Abstract][Full Text] [Related]
16. Potassium channel openers increase aortic elastic fiber formation and reverse the genetically determined elastin deficit in the BN rat. Slove S; Lannoy M; Behmoaras J; Pezet M; Sloboda N; Lacolley P; Escoubet B; Buján J; Jacob MP Hypertension; 2013 Oct; 62(4):794-801. PubMed ID: 23918751 [TBL] [Abstract][Full Text] [Related]
17. Control of elastin metabolism by elastin ligands. Reciprocal effects on lysyl oxidase activity. Kagan HM; Tseng L; Simpson DE J Biol Chem; 1981 Jun; 256(11):5417-21. PubMed ID: 6113236 [No Abstract] [Full Text] [Related]
18. Elastase-like activity in cultured aortic endothelial cells. Menashi S; Hornebeck W; Robert L; Legrand Y Thromb Res; 1989 Jan; 53(1):11-8. PubMed ID: 2922699 [TBL] [Abstract][Full Text] [Related]
19. Characterization of an elastase from aneurysmal aorta which degrades intact aortic elastin. Reilly JM; Brophy CM; Tilson MD Ann Vasc Surg; 1992 Nov; 6(6):499-502. PubMed ID: 1463662 [TBL] [Abstract][Full Text] [Related]
20. Elastin in a neonatal rat smooth muscle cell culture has greatly decreased susceptibility to proteolysis by human neutrophil elastase. An in vitro model of elastolytic injury. Stone PJ; McMahon MP; Morris SM; Calore JD; Franzblau C In Vitro Cell Dev Biol; 1987 Oct; 23(10):663-76. PubMed ID: 3667486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]