These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19787771)

  • 1. Modeling reaction routes from rhodopsin to bathorhodopsin.
    Khrenova MG; Bochenkova AV; Nemukhin AV
    Proteins; 2010 Feb; 78(3):614-22. PubMed ID: 19787771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K.
    Furutani Y; Kandori H; Shichida Y
    Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of the Z to E photoisomerization of penta-2,4-dieniminium by hydrogen out-of-plane motion: theoretical study on a model system of retinal protonated Schiff base.
    Sumita M; Ryazantsev MN; Saito K
    Phys Chem Chem Phys; 2009 Aug; 11(30):6406-14. PubMed ID: 19809672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An opsin shift in rhodopsin: retinal S0-S1 excitation in protein, in solution, and in the gas phase.
    Bravaya K; Bochenkova A; Granovsky A; Nemukhin A
    J Am Chem Soc; 2007 Oct; 129(43):13035-42. PubMed ID: 17924622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR chemical shifts of the rhodopsin chromophore in the dark state and in bathorhodopsin: a hybrid QM/MM molecular dynamics study.
    Röhrig UF; Sebastiani D
    J Phys Chem B; 2008 Jan; 112(4):1267-74. PubMed ID: 18177030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure.
    Okada T; Sugihara M; Bondar AN; Elstner M; Entel P; Buss V
    J Mol Biol; 2004 Sep; 342(2):571-83. PubMed ID: 15327956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the excited state relaxation paths of rhodopsin and isorhodopsin.
    Strambi A; Coto PB; Frutos LM; Ferré N; Olivucci M
    J Am Chem Soc; 2008 Mar; 130(11):3382-8. PubMed ID: 18302369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure around C6-C7 bond of the chromophore in bathorhodopsin: low-temperature spectroscopy of 6s-cis-locked bicyclic rhodopsin analogs.
    Imamoto Y; Sakai M; Katsuta Y; Wada A; Ito M; Shichida Y
    Biochemistry; 1996 May; 35(20):6257-62. PubMed ID: 8639566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects.
    Schapiro I; Ryazantsev MN; Frutos LM; Ferré N; Lindh R; Olivucci M
    J Am Chem Soc; 2011 Mar; 133(10):3354-64. PubMed ID: 21341699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.
    Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D
    J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory.
    Ferré N; Olivucci M
    J Am Chem Soc; 2003 Jun; 125(23):6868-9. PubMed ID: 12783530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational characterization of reaction intermediates in the photocycle of the sensory domain of the AppA blue light photoreceptor.
    Khrenova MG; Domratcheva T; Schlichting I; Grigorenko BL; Nemukhin AV
    Photochem Photobiol; 2011; 87(3):564-73. PubMed ID: 21155828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding rhodopsin mutations linked to the retinitis pigmentosa disease: a QM/MM and DFT/MRCI study.
    Hernández-Rodríguez EW; Sánchez-García E; Crespo-Otero R; Montero-Alejo AL; Montero LA; Thiel W
    J Phys Chem B; 2012 Jan; 116(3):1060-76. PubMed ID: 22126625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 9-Demethylrhodopsin: theoretical evidence for a relaxed batho intermediate.
    Sugihara M; Buss V
    Biochemistry; 2008 Dec; 47(52):13733-5. PubMed ID: 19063606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast infrared spectroscopy of riboflavin: dynamics, electronic structure, and vibrational mode analysis.
    Wolf MM; Schumann C; Gross R; Domratcheva T; Diller R
    J Phys Chem B; 2008 Oct; 112(42):13424-32. PubMed ID: 18821792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary photoprocess in vision: minimal motion to reach the photo- and bathorhodopsin intermediates.
    Blomgren F; Larsson S
    J Phys Chem B; 2005 May; 109(18):9104-10. PubMed ID: 16852083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating absorption shifts for retinal proteins: computational challenges.
    Wanko M; Hoffmann M; Strodel P; Koslowski A; Thiel W; Neese F; Frauenheim T; Elstner M
    J Phys Chem B; 2005 Mar; 109(8):3606-15. PubMed ID: 16851399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scaled quantum mechanical approach of vibrational analysis of o-tolunitrile based on FTIR and FT Raman spectra, ab initio, Hartree Fock and DFT methods.
    Nagabalasubramanian PB; Periandy S; Mohan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Dec; 74(5):1280-7. PubMed ID: 19875327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of vibrational spectra of linear tetrapyrroles. 4. Methine bridge C-H out-of-plane modes.
    Mroginski MA; Murgida DH; Hildebrandt P
    J Phys Chem A; 2006 Sep; 110(36):10564-74. PubMed ID: 16956238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.