These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19787924)

  • 1. Chemical interpretation of oscillatory modes at a Hopf point.
    Danø S; Madsen MF; Sørensen PG
    Phys Chem Chem Phys; 2005 Apr; 7(8):1674-9. PubMed ID: 19787924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comb-like Turing patterns embedded in Hopf oscillations: Spatially localized states outside the 2:1 frequency locked region.
    Castillero PM; Yochelis A
    Chaos; 2017 Apr; 27(4):043110. PubMed ID: 28456181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of oxygen on time-dependent bifurcations in the Belousov-Zhabotinsky oscillating chemical reaction in a batch.
    Kalishyn YY; Rachwalska M; Khavrus VO; Strizhak PE
    Phys Chem Chem Phys; 2005 Apr; 7(8):1680-6. PubMed ID: 19787925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model.
    Xie Y; Chen L; Kang YM; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow acceleration and deacceleration through a Hopf bifurcation: power ramps, target nucleation, and elliptic bursting.
    Baer SM; Gaekel EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036205. PubMed ID: 18851119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling oscillatory microtubule polymerization.
    Hammele M; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021903. PubMed ID: 12636711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction.
    Pullela SR; Cristancho D; He P; Luo D; Hall KR; Cheng Z
    Phys Chem Chem Phys; 2009 Jun; 11(21):4236-43. PubMed ID: 19458825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical attributes of nanocatalyzed self-oscillating reactions via bifurcation analyses.
    Rajput V; Dayal P
    J Chem Phys; 2021 Aug; 155(6):064902. PubMed ID: 34391358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant Behavior in a Periodically Forced Nonisothermal Oregonator.
    García-Selfa D; Muñuzuri AP; Pérez-Mercader J; Simakov DSA
    J Phys Chem A; 2019 Sep; 123(38):8083-8088. PubMed ID: 31441660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-phase patterns in forced oscillatory systems.
    Lin AL; Hagberg A; Ardelea A; Bertram M; Swinney HL; Meron E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3790-8. PubMed ID: 11088896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antispiral waves in reaction-diffusion systems.
    Gong Y; Christini DJ
    Phys Rev Lett; 2003 Feb; 90(8):088302. PubMed ID: 12633467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.
    Hastings HM; Sobel SG; Field RJ; Bongiovi D; Burke B; Richford D; Finzel K; Garuthara M
    J Phys Chem A; 2008 May; 112(21):4715-8. PubMed ID: 18459756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hopf bifurcation in delayed nutrient-microorganism model with network structure.
    Chen M; Zheng Q; Wu R; Chen L
    J Biol Dyn; 2022 Dec; 16(1):1-13. PubMed ID: 35000575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling.
    Choe CU; Flunkert V; Hövel P; Benner H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046206. PubMed ID: 17500977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oregonator Scaling Motivated by the Showalter-Noyes Limit.
    Hastings HM; Field RJ; Sobel SG; Guralnick D
    J Phys Chem A; 2016 Oct; 120(41):8006-8010. PubMed ID: 27690433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy and power characteristics of nanocatalyzed Belousov-Zhabotinsky reactions via bifurcation analyses.
    Rajput V; Dayal P
    Phys Rev E; 2023 Dec; 108(6-1):064211. PubMed ID: 38243536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model.
    Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of unstable rigid rotation of spiral waves in excitable media.
    Schlesner J; Zykov V; Engel H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046215. PubMed ID: 17155161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bistability and oscillations in chemical reaction networks.
    Domijan M; Kirkilionis M
    J Math Biol; 2009 Oct; 59(4):467-501. PubMed ID: 19023573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex mixed-mode oscillatory patterns in a periodically forced excitable Belousov-Zhabotinsky reaction model.
    Español MI; Rotstein HG
    Chaos; 2015 Jun; 25(6):064612. PubMed ID: 26117137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.