These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 19787925)
1. The effect of oxygen on time-dependent bifurcations in the Belousov-Zhabotinsky oscillating chemical reaction in a batch. Kalishyn YY; Rachwalska M; Khavrus VO; Strizhak PE Phys Chem Chem Phys; 2005 Apr; 7(8):1680-6. PubMed ID: 19787925 [TBL] [Abstract][Full Text] [Related]
2. Control of chemical chaos through medium viscosity in a batch ferroin-catalysed Belousov-Zhabotinsky reaction. Budroni MA; Calabrese I; Miele Y; Rustici M; Marchettini N; Rossi F Phys Chem Chem Phys; 2017 Dec; 19(48):32235-32241. PubMed ID: 29188267 [TBL] [Abstract][Full Text] [Related]
3. Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinsky reaction under batch conditions. Blagojević SM; Anić SR; Cupić ZD; Pejić ND; Kolar-Anić LZ Phys Chem Chem Phys; 2008 Nov; 10(44):6658-64. PubMed ID: 18989478 [TBL] [Abstract][Full Text] [Related]
4. Coexistence of two bifurcation regimes in a closed ferroin-catalyzed Belousov-Zhabotinsky reaction. Wang J; Zhao J; Chen Y; Gao Q; Wang Y J Phys Chem A; 2005 Feb; 109(7):1374-81. PubMed ID: 16833454 [TBL] [Abstract][Full Text] [Related]
5. Transient complex oscillations in a closed chemical system with coupled autocatalysis. Zhao J; Chen Y; Wang J J Chem Phys; 2005 Mar; 122(11):114514. PubMed ID: 15836236 [TBL] [Abstract][Full Text] [Related]
6. Chemical interpretation of oscillatory modes at a Hopf point. Danø S; Madsen MF; Sørensen PG Phys Chem Chem Phys; 2005 Apr; 7(8):1674-9. PubMed ID: 19787924 [TBL] [Abstract][Full Text] [Related]
7. Complex oscillations in the Belousov-Zhabotinsky batch reaction with methylmalonic acid and manganese(ii). Frerichs GA; Yengi D RSC Adv; 2021 Apr; 11(27):16435-16444. PubMed ID: 35479119 [TBL] [Abstract][Full Text] [Related]
8. High-frequency oscillations in the Belousov-Zhabotinsky reaction. Bánsági T; Leda M; Toiya M; Zhabotinsky AM; Epstein IR J Phys Chem A; 2009 May; 113(19):5644-8. PubMed ID: 19374364 [TBL] [Abstract][Full Text] [Related]
9. Effects of non-ionic micelles on transient chaos in an unstirred Belousov-Zhabotinsky reaction. Rustici M; Lombardo R; Mangone M; Sbriziolo C; Zambrano V; Turco Liveri ML Faraday Discuss; 2001; (120):39-51; discussion 85-104. PubMed ID: 11901688 [TBL] [Abstract][Full Text] [Related]
10. The effect of acetone on the dynamics of temporal oscillations and waves in the ruthenium-catalyzed Belousov-Zhabotinsky reaction. Somboon T; Wilairat P; Müller SC; Kheowan OU Phys Chem Chem Phys; 2015 Mar; 17(11):7114-21. PubMed ID: 25684352 [TBL] [Abstract][Full Text] [Related]
11. Infinite period and Hopf bifurcations for the pH-regulated oscillations in a semibatch reactor (H(2)O(2)-Cu(2+)-S(2)O(2-) (3)-NaOH system). Strizhak PE; Pojman JA Chaos; 1996 Sep; 6(3):461-465. PubMed ID: 12780276 [TBL] [Abstract][Full Text] [Related]
12. Batch pH Oscillations in the Belousov-Zhabotinsky Reaction. Frerichs GA; Jones J; Huang X; Gebrekidan M; Burch J; Cheng MY; Chen Y J Phys Chem A; 2019 Feb; 123(7):1303-1310. PubMed ID: 30672706 [TBL] [Abstract][Full Text] [Related]
13. Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction. Pullela SR; Cristancho D; He P; Luo D; Hall KR; Cheng Z Phys Chem Chem Phys; 2009 Jun; 11(21):4236-43. PubMed ID: 19458825 [TBL] [Abstract][Full Text] [Related]
14. Patterns in the Belousov-Zhabotinsky reaction in water-in-oil microemulsion induced by a temperature gradient. Carballido-Landeira J; Vanag VK; Epstein IR Phys Chem Chem Phys; 2010 Apr; 12(15):3656-65. PubMed ID: 20358062 [TBL] [Abstract][Full Text] [Related]
15. Delayed Mechanical Response to Chemical Kinetics in Self-Oscillating Hydrogels Driven by the Belousov-Zhabotinsky Reaction. Geher-Herczegh T; Wang Z; Masuda T; Yoshida R; Vasudevan N; Hayashi Y Macromolecules; 2021 Jul; 54(13):6430-6439. PubMed ID: 34483368 [TBL] [Abstract][Full Text] [Related]
16. Dynamical attributes of nanocatalyzed self-oscillating reactions via bifurcation analyses. Rajput V; Dayal P J Chem Phys; 2021 Aug; 155(6):064902. PubMed ID: 34391358 [TBL] [Abstract][Full Text] [Related]
17. Local and global bifurcations at infinity in models of glycolytic oscillations. Sturis J; Brøns M J Math Biol; 1997 Dec; 36(2):119-32. PubMed ID: 9463107 [TBL] [Abstract][Full Text] [Related]
18. Slow acceleration and deacceleration through a Hopf bifurcation: power ramps, target nucleation, and elliptic bursting. Baer SM; Gaekel EM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036205. PubMed ID: 18851119 [TBL] [Abstract][Full Text] [Related]
19. Role of the reagents consumption in the chaotic dynamics of the Belousov-Zhabotinsky oscillator in closed unstirred reactors. Marchettini N; Antonio Budroni M; Rossi F; Masia M; Liria Turco Liveri M; Rustici M Phys Chem Chem Phys; 2010 Sep; 12(36):11062-9. PubMed ID: 20672153 [TBL] [Abstract][Full Text] [Related]
20. Observations of the effect of anionic, cationic, neutral, and zwitterionic surfactants on the Belousov-Zhabotinsky reaction. Paul A J Phys Chem B; 2005 May; 109(19):9639-44. PubMed ID: 16852160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]