BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19787932)

  • 1. Assessment of theoretical prediction of the NMR shielding tensor of 195PtClxBr(6-x)(2-) complexes by DFT calculations: experimental and computational results.
    Fowe EP; Belser P; Daul C; Chermette H
    Phys Chem Chem Phys; 2005 Apr; 7(8):1732-8. PubMed ID: 19787932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol.
    Tsipis AC; Karapetsas IN
    Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin-orbit effects on the
    Alkan F; Dybowski C
    Solid State Nucl Magn Reson; 2018 Nov; 95():6-11. PubMed ID: 30189330
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Todisco S; Saielli G; Gallo V; Latronico M; Rizzuti A; Mastrorilli P
    Dalton Trans; 2018 Jul; 47(27):8884-8891. PubMed ID: 29845184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects?
    Tsipis AC; Karapetsas IN
    Magn Reson Chem; 2016 Aug; 54(8):656-64. PubMed ID: 26990565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study and molecular orbital analysis of NMR shielding, spin-spin coupling, and electric field gradients of azido platinum complexes.
    Sutter K; Autschbach J
    J Am Chem Soc; 2012 Aug; 134(32):13374-85. PubMed ID: 22794134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion.
    Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J
    J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward an accurate determination of 195Pt chemical shifts by density functional computations: the importance of unspecific solvent effects and the dependence of Pt magnetic shielding constants on structural parameters.
    Sterzel M; Autschbach J
    Inorg Chem; 2006 Apr; 45(8):3316-24. PubMed ID: 16602791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An NMR and relativistic DFT investigation of one-bond nuclear spin-spin coupling in solid triphenyl group-14 chlorides.
    Willans MJ; Demko BA; Wasylishen RE
    Phys Chem Chem Phys; 2006 Jun; 8(23):2733-43. PubMed ID: 16763706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a hybrid DFT method for calculating NMR shieldings using Slater-type orbitals with spin-orbital coupling included. Applications to 187Os, 195Pt, and 13C in heavy-metal complexes.
    Krykunov M; Ziegler T; van Lenthe E
    J Phys Chem A; 2009 Oct; 113(43):11495-500. PubMed ID: 19731903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.
    Paschoal D; Guerra CF; de Oliveira MA; Ramalho TC; Dos Santos HF
    J Comput Chem; 2016 Oct; 37(26):2360-73. PubMed ID: 27510431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum-modified adenines: unprecedented protonation behavior revealed by NMR spectroscopy and relativistic density-functional theory calculations.
    Vícha J; Demo G; Marek R
    Inorg Chem; 2012 Feb; 51(3):1371-9. PubMed ID: 22260420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards the accurate calculation of 183W NMR chemical shifts in polyoxometalates: the relevance of the structure.
    Vilà-Nadal L; Sarasa JP; Rodríguez-Fortea A; Igual J; Kazansky LP; Poblet JM
    Chem Asian J; 2010 Jan; 5(1):97-104. PubMed ID: 19967735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR and DFT analysis of trisaccharide from heparin repeating sequence.
    Hricovíni M; Driguez PA; Malkina OL
    J Phys Chem B; 2014 Oct; 118(41):11931-42. PubMed ID: 25254635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT study of the NMR properties of xenon in covalent compounds and van der waals complexes-implications for the use of 129Xe as a molecular probe.
    Bagno A; Saielli G
    Chemistry; 2003 Apr; 9(7):1486-95. PubMed ID: 12658645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic effect on 77Se NMR chemical shifts of various selenium species in the framework of zeroth-order regular approximation.
    Nakanishi W; Hayashi S; Katsura Y; Hada M
    J Phys Chem A; 2011 Aug; 115(31):8721-30. PubMed ID: 21710994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of experimental and DFT calculations of ¹⁹⁵Pt NMR shielding trends for [PtX(n)Y(6-n)](2-) (X, Y = Cl, Br, F and I) anions.
    Burger MR; Kramer J; Chermette H; Koch KR
    Magn Reson Chem; 2010 Dec; 48 Suppl 1():S38-47. PubMed ID: 21104761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.