BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 19788062)

  • 21. Iron Imports. V. Transport of iron through the intestinal epithelium.
    Ma Y; Yeh M; Yeh KY; Glass J
    Am J Physiol Gastrointest Liver Physiol; 2006 Mar; 290(3):G417-22. PubMed ID: 16474007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of L-valine-acyclovir via the oligopeptide transporter in the human intestinal cell line, Caco-2.
    de Vrueh RL; Smith PL; Lee CP
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1166-70. PubMed ID: 9732374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zinc transport by respiratory epithelial cells and interaction with iron homeostasis.
    Deng Z; Dailey LA; Soukup J; Stonehuerner J; Richards JD; Callaghan KD; Yang F; Ghio AJ
    Biometals; 2009 Oct; 22(5):803-15. PubMed ID: 19306086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decreased hephaestin expression and activity leads to decreased iron efflux from differentiated Caco2 cells.
    Chen H; Attieh ZK; Dang T; Huang G; van der Hee RM; Vulpe C
    J Cell Biochem; 2009 Jul; 107(4):803-8. PubMed ID: 19452451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manganese transport by Caco-2 cells.
    Leblondel G; Allain P
    Biol Trace Elem Res; 1999 Jan; 67(1):13-28. PubMed ID: 10065594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dietary zinc absorption: A play of Zips and ZnTs in the gut.
    Wang X; Zhou B
    IUBMB Life; 2010 Mar; 62(3):176-82. PubMed ID: 20120011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of copper absorption by copper availability in the Caco-2 cell intestinal model.
    Zerounian NR; Redekosky C; Malpe R; Linder MC
    Am J Physiol Gastrointest Liver Physiol; 2003 May; 284(5):G739-47. PubMed ID: 12540371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cooperation of metallothionein and zinc transporters for regulating zinc homeostasis in human intestinal Caco-2 cells.
    Shen H; Qin H; Guo J
    Nutr Res; 2008 Jun; 28(6):406-13. PubMed ID: 19083439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional and molecular responses of human intestinal Caco-2 cells to iron treatment.
    Tallkvist J; Bowlus CL; Lönnerdal B
    Am J Clin Nutr; 2000 Sep; 72(3):770-5. PubMed ID: 10966897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of inhibition of haem biosynthesis by griseofulvin on intestinal iron absorption.
    Laftah AH; Raja KB; Beaumont N; Simpson RJ; Deacon A; Solanky N; Srai SK; Peters TJ
    Basic Clin Pharmacol Toxicol; 2004 Apr; 94(4):161-8. PubMed ID: 15078340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ferroportin/IREG-1/MTP-1/SLC40A1 modulates the uptake of iron at the apical membrane of enterocytes.
    Thomas C; Oates PS
    Gut; 2004 Jan; 53(1):44-9. PubMed ID: 14684575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium, iron and zinc uptakes by Caco-2 cells from white beans and effect of cooking.
    Viadel B; Barberá R; Farré R
    Int J Food Sci Nutr; 2006; 57(3-4):190-7. PubMed ID: 17127469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of dietary ligands and food matrices on zinc uptake in Caco-2 cells: implications in assessing zinc bioavailability.
    Sreenivasulu K; Raghu P; Ravinder P; Nair KM
    J Agric Food Chem; 2008 Nov; 56(22):10967-72. PubMed ID: 18947232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of pH and the iron redox state on iron uptake in the intestine of a marine teleost fish, gulf toadfish (Opsanus beta).
    Cooper CA; Bury NR; Grosell M
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Mar; 143(3):292-8. PubMed ID: 16431145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter.
    Wang F; Kim BE; Dufner-Beattie J; Petris MJ; Andrews G; Eide DJ
    Hum Mol Genet; 2004 Mar; 13(5):563-71. PubMed ID: 14709598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localization of the iron transport proteins Mobilferrin and DMT-1 in the duodenum: the surprising role of mucin.
    Simovich M; Hainsworth LN; Fields PA; Umbreit JN; Conrad ME
    Am J Hematol; 2003 Sep; 74(1):32-45. PubMed ID: 12949888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1.
    Ludwiczek S; Theurl I; Muckenthaler MU; Jakab M; Mair SM; Theurl M; Kiss J; Paulmichl M; Hentze MW; Ritter M; Weiss G
    Nat Med; 2007 Apr; 13(4):448-54. PubMed ID: 17293870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and localization of divalent metal transporter-1 (DMT-1) in term human placenta.
    Georgieff MK; Wobken JK; Welle J; Burdo JR; Connor JR
    Placenta; 2000 Nov; 21(8):799-804. PubMed ID: 11095929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of zinc on D-galactose and L-phenylalanine uptake in rat intestine in vitro.
    Lugea A; Barber A; Ponz F
    Rev Esp Fisiol; 1995 Sep; 51(3):139-46. PubMed ID: 8606991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for cadmium uptake through Nramp2: metal speciation studies with Caco-2 cells.
    Elisma F; Jumarie C
    Biochem Biophys Res Commun; 2001 Jul; 285(3):662-8. PubMed ID: 11453644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.