BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 19788179)

  • 1. Crystal structure of a photoactive yellow protein from a sensor histidine kinase: conformational variability and signal transduction.
    Rajagopal S; Moffat K
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1649-54. PubMed ID: 12563032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary steps of the photoactive yellow protein: isolated chromophore dynamics and protein directed function.
    Lee IR; Lee W; Zewail AH
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):258-62. PubMed ID: 16407155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the reaction coordinates of millisecond light-induced conformational changes in photoactive yellow protein.
    Vreede J; Juraszek J; Bolhuis PG
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2397-402. PubMed ID: 20133754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical transition and proteinquake in photoactive yellow protein.
    Itoh K; Sasai M
    Proc Natl Acad Sci U S A; 2004 Oct; 101(41):14736-41. PubMed ID: 15466708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging.
    Lee K; Kim Y; Jung J; Ihee H; Park Y
    Sci Rep; 2018 Feb; 8(1):3064. PubMed ID: 29449627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule detection of structural changes during Per-Arnt-Sim (PAS) domain activation.
    Zhao JM; Lee H; Nome RA; Majid S; Scherer NF; Hoff WD
    Proc Natl Acad Sci U S A; 2006 Aug; 103(31):11561-6. PubMed ID: 16855050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible molecular motional switch based on circular photoactive protein oligomers exhibits unexpected photo-induced contraction.
    Lee SJ; Kim Y; Kim TW; Yang C; Thamilselvan K; Jeong H; Hyun J; Ihee H
    Cell Rep Phys Sci; 2021 Aug; 2(8):. PubMed ID: 35509376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Fabrication of Plasmonic Superlattice Membrane by Aspect-Ratio Controllable Nanobricks for Label-Free Protein Detection.
    Chen Y; Liu H; Yin H; Zhu Q; Yao G; Gu N
    Front Chem; 2020; 8():307. PubMed ID: 32411663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Enhanced Raman Spectroscopy for Single Molecule Protein Detection.
    Almehmadi LM; Curley SM; Tokranova NA; Tenenbaum SA; Lednev IK
    Sci Rep; 2019 Aug; 9(1):12356. PubMed ID: 31451702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular distance measurement with TNT suppressor on the M13 bacteriophage-based Förster resonance energy transfer system.
    Kim I; Song H; Kim C; Kim M; Kyhm K; Kim K; Oh JW
    Sci Rep; 2019 Jan; 9(1):496. PubMed ID: 30679611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Fluorescent Activity of N²-Indolyl-1,2,3-triazole.
    Zhang YC; Jin R; Li LY; Chen Z; Fu LM
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28872608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity.
    Prinz J; Heck C; Ellerik L; Merk V; Bald I
    Nanoscale; 2016 Mar; 8(10):5612-20. PubMed ID: 26892770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of receptor-induced glycoprotein conformational changes on enveloped virions by using confocal micro-Raman spectroscopy.
    Lu X; Liu Q; Benavides-Montano JA; Nicola AV; Aston DE; Rasco BA; Aguilar HC
    J Virol; 2013 Mar; 87(6):3130-42. PubMed ID: 23283947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of hotspots in a highly enhancing SERS substrate.
    Asiala SM; Schultz ZD
    Analyst; 2011 Nov; 136(21):4472-9. PubMed ID: 21946698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles.
    Abalde-Cela S; Aldeanueva-Potel P; Mateo-Mateo C; Rodríguez-Lorenzo L; Alvarez-Puebla RA; Liz-Marzán LM
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S435-50. PubMed ID: 20462878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering captures conformational changes of single photoactive yellow protein molecules under photoexcitation.
    Singhal K; Kalkan AK
    J Am Chem Soc; 2010 Jan; 132(2):429-31. PubMed ID: 19788179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes during the photocycle of photoactive yellow protein monitored by ultraviolet resonance raman spectra of tyrosine and tryptophan.
    El-Mashtoly SF; Yamauchi S; Kumauchi M; Hamada N; Tokunaga F; Unno M
    J Phys Chem B; 2005 Dec; 109(49):23666-73. PubMed ID: 16375346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational assignment of the 4-hydroxycinnamyl chromophore in photoactive yellow protein.
    Unno M; Kumauchi M; Tokunaga F; Yamauchi S
    J Phys Chem B; 2007 Mar; 111(10):2719-26. PubMed ID: 17311445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermochromatium tepidum photoactive yellow protein/bacteriophytochrome/diguanylate cyclase: characterization of the PYP domain.
    Kyndt JA; Fitch JC; Meyer TE; Cusanovich MA
    Biochemistry; 2005 Mar; 44(12):4755-64. PubMed ID: 15779902
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.