These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 19788181)
1. A combined QM/MM study on the reductive half-reaction of xanthine oxidase: substrate orientation and mechanism. Metz S; Thiel W J Am Chem Soc; 2009 Oct; 131(41):14885-902. PubMed ID: 19788181 [TBL] [Abstract][Full Text] [Related]
2. QM/MM studies of xanthine oxidase: variations of cofactor, substrate, and active-site Glu802. Metz S; Thiel W J Phys Chem B; 2010 Jan; 114(3):1506-17. PubMed ID: 20050623 [TBL] [Abstract][Full Text] [Related]
3. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations. Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751 [TBL] [Abstract][Full Text] [Related]
4. Studies on the mechanism of action of xanthine oxidase. Choi EY; Stockert AL; Leimkühler S; Hille R J Inorg Biochem; 2004 May; 98(5):841-8. PubMed ID: 15134930 [TBL] [Abstract][Full Text] [Related]
5. Density-functional theory models of xanthine oxidoreductase activity: comparison of substrate tautomerization and protonation. Bayse CA Dalton Trans; 2009 Apr; (13):2306-14. PubMed ID: 19290363 [TBL] [Abstract][Full Text] [Related]
6. Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism. Amano T; Ochi N; Sato H; Sakaki S J Am Chem Soc; 2007 Jul; 129(26):8131-8. PubMed ID: 17564439 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228 [TBL] [Abstract][Full Text] [Related]
8. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction. Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619 [TBL] [Abstract][Full Text] [Related]
9. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M; Kawai R; Adams JA; Weare JH J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447 [TBL] [Abstract][Full Text] [Related]
10. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. Ishida T; Kato S J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425 [TBL] [Abstract][Full Text] [Related]
11. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: a combined QM/MM study. Metz S; Wang D; Thiel W J Am Chem Soc; 2009 Apr; 131(13):4628-40. PubMed ID: 19290633 [TBL] [Abstract][Full Text] [Related]
12. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study. Díaz N; Suárez D J Phys Chem B; 2008 Jul; 112(28):8412-24. PubMed ID: 18570467 [TBL] [Abstract][Full Text] [Related]
13. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex. Rungrotmongkol T; Mulholland AJ; Hannongbua S J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299 [TBL] [Abstract][Full Text] [Related]
14. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. Yamaguchi Y; Matsumura T; Ichida K; Okamoto K; Nishino T J Biochem; 2007 Apr; 141(4):513-24. PubMed ID: 17301077 [TBL] [Abstract][Full Text] [Related]
15. Methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr): protonation state of the ligand and active-site residues. Alonso H; Cummins PL; Gready JE J Phys Chem B; 2009 Nov; 113(44):14787-96. PubMed ID: 19827815 [TBL] [Abstract][Full Text] [Related]
16. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. Chen P; Solomon EI J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism of guanine deaminase: an ONIOM and molecular dynamics study. Yao L; Cukier RI; Yan H J Phys Chem B; 2007 Apr; 111(16):4200-10. PubMed ID: 17394305 [TBL] [Abstract][Full Text] [Related]
18. QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam. Zheng J; Wang D; Thiel W; Shaik S J Am Chem Soc; 2006 Oct; 128(40):13204-15. PubMed ID: 17017800 [TBL] [Abstract][Full Text] [Related]
19. Combined QM/MM mechanistic study of the acylation process in furin complexed with the H5N1 avian influenza virus hemagglutinin's cleavage site. Rungrotmongkol T; Decha P; Sompornpisut P; Malaisree M; Intharathep P; Nunthaboot N; Udommaneethanakit T; Aruksakunwong O; Hannongbua S Proteins; 2009 Jul; 76(1):62-71. PubMed ID: 19089976 [TBL] [Abstract][Full Text] [Related]
20. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]