These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 19788288)

  • 1. Application of the diffusion Monte Carlo method to the binding of excess electrons to water clusters.
    Xu J; Jordan KD
    J Phys Chem A; 2010 Jan; 114(3):1364-6. PubMed ID: 19788288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Monte Carlo study of porphyrin transition metal complexes.
    Koseki J; Maezono R; Tachikawa M; Towler MD; Needs RJ
    J Chem Phys; 2008 Aug; 129(8):085103. PubMed ID: 19044853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Monte Carlo calculations of the dissociation energies of three-electron hemibonded radical cationic dimers.
    Gurtubay IG; Drummond ND; Towler MD; Needs RJ
    J Chem Phys; 2006 Jan; 124(2):024318. PubMed ID: 16422594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Kohn-Sham density of states and band gap of water: from small clusters to liquid water.
    Cabral do Couto P; Estácio SG; Costa Cabral BJ
    J Chem Phys; 2005 Aug; 123(5):054510. PubMed ID: 16108672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Monte Carlo study of first-row atoms using transcorrelated variational Monte Carlo trial functions.
    Prasad R; Umezawa N; Domin D; Salomon-Ferrer R; Lester WA
    J Chem Phys; 2007 Apr; 126(16):164109. PubMed ID: 17477591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards accurate all-electron quantum Monte Carlo calculations of transition-metal systems: spectroscopy of the copper atom.
    Caffarel M; Daudey JP; Heully JL; Ramírez-Solís A
    J Chem Phys; 2005 Sep; 123(9):94102. PubMed ID: 16164336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixed-node diffusion Monte Carlo study of the structures of m-benzyne.
    Al-Saidi WA; Umrigar CJ
    J Chem Phys; 2008 Apr; 128(15):154324. PubMed ID: 18433226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.
    Wiklund K; Olivera GH; Brahme A; Lind BK
    Radiat Res; 2008 Jul; 170(1):83-92. PubMed ID: 18582149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion Monte Carlo approaches for evaluating rotationally excited states of symmetric top molecules: application to H(3)O(+) and D(3)O(+).
    Petit AS; McCoy AB
    J Phys Chem A; 2009 Nov; 113(45):12706-14. PubMed ID: 19678634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic hydrogen-bond networks and ion solvation. 1. An efficient Monte Carlo/quantum mechanical method for structural search and energy computations: ammonium/water.
    Zhao YL; Meot-Ner Mautner M; Gonzalez C
    J Phys Chem A; 2009 Mar; 113(12):2967-74. PubMed ID: 19243164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate dipole polarizabilities for water clusters n=2-12 at the coupled-cluster level of theory and benchmarking of various density functionals.
    Hammond JR; Govind N; Kowalski K; Autschbach J; Xantheas SS
    J Chem Phys; 2009 Dec; 131(21):214103. PubMed ID: 19968333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters.
    Herbert JM; Head-Gordon M
    Phys Chem Chem Phys; 2006 Jan; 8(1):68-78. PubMed ID: 16482246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods in coupled electron-ion Monte Carlo simulations.
    Pierleoni C; Ceperley DM
    Chemphyschem; 2005 Sep; 6(9):1872-8. PubMed ID: 16088971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantum Monte Carlo study on electron correlation in all-metal aromatic clusters MAl4(-) (M = Li, Na, K, Rb, Cu, Ag and Au).
    Brito BG; Hai GQ; Teixeira Rabelo JN; Cândido L
    Phys Chem Chem Phys; 2014 May; 16(18):8639-45. PubMed ID: 24676470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rydberg states with quantum Monte Carlo.
    Bande A; Lüchow A; Della Sala F; Görling A
    J Chem Phys; 2006 Mar; 124(11):114114. PubMed ID: 16555881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model potential approaches for describing the interaction of excess electrons with water clusters: incorporation of long-range correlation effects.
    Sommerfeld T; DeFusco A; Jordan KD
    J Phys Chem A; 2008 Nov; 112(44):11021-35. PubMed ID: 18959395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron track simulation using ETMICRO.
    Kim EH
    Radiat Prot Dosimetry; 2006; 122(1-4):53-5. PubMed ID: 17182606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The water-benzene interaction: insight from electronic structure theories.
    Ma J; Alfè D; Michaelides A; Wang E
    J Chem Phys; 2009 Apr; 130(15):154303. PubMed ID: 19388742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variational and diffusion Monte Carlo study of post-d group 13-17 elements.
    Al-Saidi WA
    J Chem Phys; 2008 Aug; 129(6):064316. PubMed ID: 18715078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.