These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19788393)

  • 1. Clearance and control mechanisms of hemoglobin from cradle to grave.
    Schaer DJ; Alayash AI
    Antioxid Redox Signal; 2010 Feb; 12(2):181-4. PubMed ID: 19788393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gating the radical hemoglobin to macrophages: the anti-inflammatory role of CD163, a scavenger receptor.
    Schaer DJ; Alayash AI; Buehler PW
    Antioxid Redox Signal; 2007 Jul; 9(7):991-9. PubMed ID: 17508920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural stabilization in tetrameric or polymeric hemoglobin determines its interaction with endogenous antioxidant scavenger pathways.
    Buehler PW; Vallelian F; Mikolajczyk MG; Schoedon G; Schweizer T; Alayash AI; Schaer DJ
    Antioxid Redox Signal; 2008 Aug; 10(8):1449-62. PubMed ID: 18522492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD163 and IgG codefend against cytotoxic hemoglobin via autocrine and paracrine mechanisms.
    Subramanian K; Du R; Tan NS; Ho B; Ding JL
    J Immunol; 2013 May; 190(10):5267-78. PubMed ID: 23589619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity.
    Deuel JW; Vallelian F; Schaer CA; Puglia M; Buehler PW; Schaer DJ
    Free Radic Biol Med; 2015 Dec; 89():931-43. PubMed ID: 26475040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies.
    Schaer DJ; Buehler PW
    Cold Spring Harb Perspect Med; 2013 Jun; 3(6):. PubMed ID: 23645855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development.
    Schaer DJ; Vinchi F; Ingoglia G; Tolosano E; Buehler PW
    Front Physiol; 2014; 5():415. PubMed ID: 25389409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule.
    Domingues-Hamdi E; Vasseur C; Fournier JB; Marden MC; Wajcman H; Baudin-Creuza V
    PLoS One; 2014; 9(11):e111395. PubMed ID: 25369055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemoglobin and heme scavenger receptors.
    Nielsen MJ; Møller HJ; Moestrup SK
    Antioxid Redox Signal; 2010 Feb; 12(2):261-73. PubMed ID: 19659436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin.
    Olsson MG; Allhorn M; Bülow L; Hansson SR; Ley D; Olsson ML; Schmidtchen A; Akerström B
    Antioxid Redox Signal; 2012 Sep; 17(5):813-46. PubMed ID: 22324321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD163-expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system.
    Schaer CA; Vallelian F; Imhof A; Schoedon G; Schaer DJ
    J Leukoc Biol; 2007 Jul; 82(1):106-10. PubMed ID: 17460152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical redox and allosteric aspects of nitric oxide interactions with hemoglobin.
    Bonaventura C; Fago A; Henkens R; Crumbliss AL
    Antioxid Redox Signal; 2004 Dec; 6(6):979-91. PubMed ID: 15548895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicological consequences of extracellular hemoglobin: biochemical and physiological perspectives.
    Buehler PW; D'Agnillo F
    Antioxid Redox Signal; 2010 Feb; 12(2):275-91. PubMed ID: 19659434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucocorticoid treatment skews human monocyte differentiation into a hemoglobin-clearance phenotype with enhanced heme-iron recycling and antioxidant capacity.
    Vallelian F; Schaer CA; Kaempfer T; Gehrig P; Duerst E; Schoedon G; Schaer DJ
    Blood; 2010 Dec; 116(24):5347-56. PubMed ID: 20739658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haemoglobin scavenger receptor: function in relation to disease.
    Zuwała-Jagiełło J
    Acta Biochim Pol; 2006; 53(2):257-68. PubMed ID: 16770444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oxidative denitrosylation mechanism and nitric oxide release from human fetal and adult hemoglobin, an experimentally based model simulation study.
    Salhany JM
    Blood Cells Mol Dis; 2013 Jan; 50(1):8-19. PubMed ID: 22981699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential heme release from various hemoglobin redox states and the upregulation of cellular heme oxygenase-1.
    Kassa T; Jana S; Meng F; Alayash AI
    FEBS Open Bio; 2016 Sep; 6(9):876-84. PubMed ID: 27642551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases.
    Vinchi F; De Franceschi L; Ghigo A; Townes T; Cimino J; Silengo L; Hirsch E; Altruda F; Tolosano E
    Circulation; 2013 Mar; 127(12):1317-29. PubMed ID: 23446829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin-based oxygen carriers: From mechanisms of toxicity and clearance to rational drug design.
    Buehler PW; D'Agnillo F; Schaer DJ
    Trends Mol Med; 2010 Oct; 16(10):447-57. PubMed ID: 20708968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase.
    Widmer CC; Pereira CP; Gehrig P; Vallelian F; Schoedon G; Buehler PW; Schaer DJ
    Antioxid Redox Signal; 2010 Feb; 12(2):185-98. PubMed ID: 19702440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.