These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19788408)

  • 41. Assessment of acute behavioral toxicity of low doses of diisopropylfluorophosphate (DFP) in rats.
    Nieminen SA; Sirkka U; Lecklin A; Heikkinen O; Ylitalo P
    Methods Find Exp Clin Pharmacol; 1991 Nov; 13(9):617-23. PubMed ID: 1787768
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of diisopropylfluorophosphate on brain acetylcholinesterase, butyrylcholinesterase, and neurotoxic esterase in rats.
    Lim DK; Hoskins B; Ho IK
    Biomed Environ Sci; 1989 Sep; 2(3):295-304. PubMed ID: 2610946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlation of muscarinic receptor density and acetylcholinesterase activity in repeated DFP-treated rats after the termination of DFP administration.
    Lim DK; Hoskins B; Ho IK
    Eur J Pharmacol; 1986 Apr; 123(2):223-8. PubMed ID: 3709665
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effective bisquaternary reactivators of tabun-inhibited AChE.
    Kuca K; Cabal J; Musilek K; Jun D; Bajgar J
    J Appl Toxicol; 2005; 25(6):491-5. PubMed ID: 16092078
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A histochemical localization of acetylcholinesterase and cholinesterase activities in mammalian kidneys.
    Suda A
    Acta Histochem; 1986; 79(1):107-14. PubMed ID: 3090831
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms involved in the development of tolerance to DFP toxicity.
    Gupta RC; Patterson GT; Dettbarn WD
    Fundam Appl Toxicol; 1985 Dec; 5(6 Pt 2):S17-28. PubMed ID: 4092885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition of human fetal brain acetylcholinesterase: marker effect of neurotoxicity.
    Banerjee J; Ghosh P; Mitra S; Ghosh N; Bhattacharya S
    J Toxicol Environ Health; 1991 Jul; 33(3):283-90. PubMed ID: 1906943
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Repeated exposures to diisopropylfluorophosphate result in structural disruptions of myelinated axons and persistent impairments of axonal transport in the brains of rats.
    Naughton SX; Hernandez CM; Beck WD; Poddar I; Yanasak N; Lin PC; Terry AV
    Toxicology; 2018 Aug; 406-407():92-103. PubMed ID: 29894704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of flow injection analysis for determination of cholinesterase activities in biological material.
    Cabal J; Bajgar J; Kassa J
    Chem Biol Interact; 2010 Sep; 187(1-3):225-8. PubMed ID: 20188079
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acetylcholinesterase inhibition and protection by dizocilpine (MK-801) enantiomers.
    Galli A; Mori F
    J Pharm Pharmacol; 1996 Jan; 48(1):71-6. PubMed ID: 8722500
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a source-to-outcome model for dietary exposures to insecticide residues: an example using chlorpyrifos.
    Hinderliter PM; Price PS; Bartels MJ; Timchalk C; Poet TS
    Regul Toxicol Pharmacol; 2011 Oct; 61(1):82-92. PubMed ID: 21722690
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gender differences in activities of mouse esterase and sensitivities to DFP and sarin toxicity.
    Tuovinen K; Kaliste-Korhonen E; Hänninen O
    Gen Pharmacol; 1997 Sep; 29(3):333-5. PubMed ID: 9378236
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetically determined differences in acute responses to diisopropylfluorophosphate.
    Smolen A; Smolen TN; Wehner JM; Collins AC
    Pharmacol Biochem Behav; 1985 Apr; 22(4):623-30. PubMed ID: 3991771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differences in response of acetylcholinesterase to diisopropylfluorophosphate in the mesencephalic raphe region. A microelectrophoretic, histochemical, and biochemical study in albino rats.
    Seidel J; Scheibler P; Müller M
    Acta Histochem; 1989; 85(1):65-72. PubMed ID: 2496574
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of cycloheximide and diisopropylphosphorofluoridate (DFP) during subchronic administration in rat.
    Gupta RC; Dettbarn WD
    Toxicol Appl Pharmacol; 1987 Aug; 90(1):52-9. PubMed ID: 3629591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of non-critical binding proteins in the sensitivity of acetylcholinesterase from different species to diisopropyl fluorophosphate (DFP), in vitro.
    Wang C; Murphy SD
    Life Sci; 1982 Jul; 31(2):139-49. PubMed ID: 7121200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physiologically-Based Pharmacokinetic and Pharmacodynamic Modeling for the Inhibition of Acetylcholinesterase by Acotiamide, A Novel Gastroprokinetic Agent for the Treatment of Functional Dyspepsia, in Rat Stomach.
    Yoshii K; Iikura M; Hirayama M; Toda R; Kawabata Y
    Pharm Res; 2016 Feb; 33(2):292-300. PubMed ID: 26350104
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A 1-methyl-4-piperidinyl cytectrene carboxylate labeled by the technetium 99m, a radiotracer for rat brain acetylcholinesterase activity.
    Mejri N; Barhoumi C; Trabelsi M; Mekni A; Said NM; Saidi M
    Nucl Med Biol; 2010 Feb; 37(2):143-8. PubMed ID: 20152713
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of vinyl acetate metabolism in rat and human nasal tissues by an in vitro gas uptake technique.
    Bogdanffy MS; Sarangapani R; Kimbell JS; Frame SR; Plowchalk DR
    Toxicol Sci; 1998 Dec; 46(2):235-46. PubMed ID: 10048126
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recovery of acetylcholinesterase activity after acute organophosphate treatment of CNS reaggregate cultures.
    Wehner JM; Smolen A; Smolen TN; Murphy C
    Fundam Appl Toxicol; 1985 Dec; 5(6 Pt 1):1104-9. PubMed ID: 4092872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.