These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 19788540)

  • 21. Identification of major sporulation proteins of Myxococcus xanthus using a proteomic approach.
    Dahl JL; Tengra FK; Dutton D; Yan J; Andacht TM; Coyne L; Windell V; Garza AG
    J Bacteriol; 2007 Apr; 189(8):3187-97. PubMed ID: 17293425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.
    Sarwar Z; Garza AG
    J Bacteriol; 2016 Feb; 198(3):377-85. PubMed ID: 26369581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetics of gliding motility and development in Myxococcus xanthus.
    Hartzell PL; Youderian P
    Arch Microbiol; 1995 Nov; 164(5):309-23. PubMed ID: 8572884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA replication during sporulation in Myxococcus xanthus fruiting bodies.
    Tzeng L; Singer M
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14428-33. PubMed ID: 16183740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Branched-chain fatty acids: the case for a novel form of cell-cell signalling during Myxococcus xanthus development.
    Downard J; Toal D
    Mol Microbiol; 1995 Apr; 16(2):171-5. PubMed ID: 7565080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interconnected cavernous structure of bacterial fruiting bodies.
    Harvey CW; Du H; Xu Z; Kaiser D; Aranson I; Alber M
    PLoS Comput Biol; 2012; 8(12):e1002850. PubMed ID: 23300427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering the hunting strategy of a bacterial wolfpack.
    Berleman JE; Kirby JR
    FEMS Microbiol Rev; 2009 Sep; 33(5):942-57. PubMed ID: 19519767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition.
    Müller FD; Schink CW; Hoiczyk E; Cserti E; Higgs PI
    Mol Microbiol; 2012 Feb; 83(3):486-505. PubMed ID: 22188356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial control of cell differentiation in Myxococcus xanthus.
    Julien B; Kaiser AD; Garza A
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):9098-103. PubMed ID: 10922065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The
    Rajagopalan R; Kroos L
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28264995
    [No Abstract]   [Full Text] [Related]  

  • 31. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus.
    Ueki T; Inouye S
    Genes Cells; 1998 Jun; 3(6):371-85. PubMed ID: 9734783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome dynamics of the
    Muñoz-Dorado J; Moraleda-Muñoz A; Marcos-Torres FJ; Contreras-Moreno FJ; Martin-Cuadrado AB; Schrader JM; Higgs PI; Pérez J
    Elife; 2019 Oct; 8():. PubMed ID: 31609203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CbgA, a protein involved in cortex formation and stress resistance in Myxococcus xanthus spores.
    Tengra FK; Dahl JL; Dutton D; Caberoy NB; Coyne L; Garza AG
    J Bacteriol; 2006 Dec; 188(23):8299-302. PubMed ID: 16997953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myxococcus xanthus twin-arginine translocation system is important for growth and development.
    Kimura Y; Saiga H; Hamanaka H; Matoba H
    Arch Microbiol; 2006 Feb; 184(6):387-96. PubMed ID: 16331440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of late-acting operons by three transcription factors and a CRISPR-Cas component during Myxococcus xanthus development.
    Saha S; Kroos L
    Mol Microbiol; 2024 May; 121(5):1002-1020. PubMed ID: 38525557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyphosphate Plays a Significant Role in the Maturation of Spores in Myxococcus xanthus.
    Harita D; Matsukawa H; Kimura Y
    Curr Microbiol; 2024 Jul; 81(8):248. PubMed ID: 38951187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Social conflict in centimeter-and global-scale populations of the bacterium Myxococcus xanthus.
    Vos M; Velicer GJ
    Curr Biol; 2009 Nov; 19(20):1763-7. PubMed ID: 19879146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A common step for changing cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus.
    Licking E; Gorski L; Kaiser D
    J Bacteriol; 2000 Jun; 182(12):3553-8. PubMed ID: 10852889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus.
    Shi W; Yang Z; Sun H; Lancero H; Tong L
    FEMS Microbiol Lett; 2000 Nov; 192(2):211-5. PubMed ID: 11064197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation.
    Meiser P; Bode HB; Müller R
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19128-33. PubMed ID: 17148609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.