These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19788540)

  • 41. Differential expression of the three multicopper oxidases from Myxococcus xanthus.
    Sánchez-Sutil MC; Gómez-Santos N; Moraleda-Muñoz A; Martins LO; Pérez J; Muñoz-Dorado J
    J Bacteriol; 2007 Jul; 189(13):4887-98. PubMed ID: 17483223
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel developmental genes, fruCD, of Myxococcus xanthus: involvement of a cell division protein in multicellular development.
    Akiyama T; Inouye S; Komano T
    J Bacteriol; 2003 Jun; 185(11):3317-24. PubMed ID: 12754229
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Myxobacterial tools for social interactions.
    Pathak DT; Wei X; Wall D
    Res Microbiol; 2012; 163(9-10):579-91. PubMed ID: 23123306
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation.
    Leng X; Zhu W; Jin J; Mao X
    Microbiology (Reading); 2011 Jul; 157(Pt 7):1886-1896. PubMed ID: 21454366
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell behaviors underlying
    Murphy P; Comstock J; Khan T; Zhang J; Welch R; Igoshin OA
    mSystems; 2023 Oct; 8(5):e0042523. PubMed ID: 37747885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning and characterization of the socA locus which restores development to Myxococcus xanthus C-signaling mutants.
    Lee K; Shimkets LJ
    J Bacteriol; 1994 Apr; 176(8):2200-9. PubMed ID: 8157590
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beta-D-Allose inhibits fruiting body formation and sporulation in Myxococcus xanthus.
    Chavira M; Cao N; Le K; Riar T; Moradshahi N; McBride M; Lux R; Shi W
    J Bacteriol; 2007 Jan; 189(1):169-78. PubMed ID: 17056749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and phenotypic characterization of Myxococcus xanthus mutants which are defective in sensing negative stimuli.
    Shi W; Köhler T; Zusman DR
    J Bacteriol; 1994 Feb; 176(3):696-701. PubMed ID: 8300525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus.
    Nielsen M; Rasmussen AA; Ellehauge E; Treuner-Lange A; Søgaard-Andersen L
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2171-2183. PubMed ID: 15256560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intercellular signaling during fruiting-body development of Myxococcus xanthus.
    Shimkets LJ
    Annu Rev Microbiol; 1999; 53():525-49. PubMed ID: 10547700
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Release of a cell surface protein during development of Myxococcus xanthus.
    Glufka R; Maeba P
    J Bacteriol; 1991 Dec; 173(24):7988-91. PubMed ID: 1744056
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of phase variation in the resistance of Myxococcus xanthus fruiting bodies to Caenorhabditis elegans predation.
    Dahl JL; Ulrich CH; Kroft TL
    J Bacteriol; 2011 Oct; 193(19):5081-9. PubMed ID: 21821771
    [TBL] [Abstract][Full Text] [Related]  

  • 53. devI is an evolutionarily young negative regulator of Myxococcus xanthus development.
    Rajagopalan R; Wielgoss S; Lippert G; Velicer GJ; Kroos L
    J Bacteriol; 2015 Apr; 197(7):1249-62. PubMed ID: 25645563
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis.
    Lee B; Holkenbrink C; Treuner-Lange A; Higgs PI
    J Bacteriol; 2012 Jun; 194(12):3058-68. PubMed ID: 22493014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An ambruticin-sensing complex modulates Myxococcus xanthus development and mediates myxobacterial interspecies communication.
    Marcos-Torres FJ; Volz C; Müller R
    Nat Commun; 2020 Nov; 11(1):5563. PubMed ID: 33149152
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AglU, a protein required for gliding motility and spore maturation of Myxococcus xanthus, is related to WD-repeat proteins.
    White DJ; Hartzell PL
    Mol Microbiol; 2000 May; 36(3):662-78. PubMed ID: 10844655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adaptive evolution of an sRNA that controls Myxococcus development.
    Yu YT; Yuan X; Velicer GJ
    Science; 2010 May; 328(5981):993. PubMed ID: 20489016
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development.
    Jelsbak L; Givskov M; Kaiser D
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):3010-5. PubMed ID: 15668379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus.
    Jelsbak L; Søgaard-Andersen L
    J Microbiol Methods; 2003 Dec; 55(3):829-39. PubMed ID: 14607429
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Developmental expression of dnaA is required for sporulation and timing of fruiting body formation in Myxococcus xanthus.
    Rosario CJ; Singer M
    Mol Microbiol; 2010 Jun; 76(5):1322-33. PubMed ID: 20487266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.