These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 19788540)

  • 61. Signaling in myxobacteria.
    Kaiser D
    Annu Rev Microbiol; 2004; 58():75-98. PubMed ID: 15487930
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Myxococcus xanthus developmental program can be delayed by inhibition of DNA replication.
    Rosario CJ; Singer M
    J Bacteriol; 2007 Dec; 189(24):8793-800. PubMed ID: 17905977
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cell-cell interactions that direct fruiting body development in Myxococcus xanthus.
    Kaplan HB
    Curr Opin Genet Dev; 1991 Oct; 1(3):363-9. PubMed ID: 1840894
    [TBL] [Abstract][Full Text] [Related]  

  • 64. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus.
    Cho K; Zusman DR
    Mol Microbiol; 1999 Oct; 34(2):268-81. PubMed ID: 10564471
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development.
    Treuner-Lange A; Ward MJ; Zusman DR
    Mol Microbiol; 2001 Apr; 40(1):126-40. PubMed ID: 11298281
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantifying aggregation dynamics during Myxococcus xanthus development.
    Zhang H; Angus S; Tran M; Xie C; Igoshin OA; Welch RD
    J Bacteriol; 2011 Oct; 193(19):5164-70. PubMed ID: 21784940
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Propionyl coenzyme A carboxylase is required for development of Myxococcus xanthus.
    Kimura Y; Sato R; Mimura K; Sato M
    J Bacteriol; 1997 Nov; 179(22):7098-102. PubMed ID: 9371458
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cell-fate determination in Myxococcus xanthus development: Network dynamics and novel predictions.
    Arias Del Angel JA; Escalante AE; Martínez-Castilla LP; Benítez M
    Dev Growth Differ; 2018 Feb; 60(2):121-129. PubMed ID: 29441522
    [TBL] [Abstract][Full Text] [Related]  

  • 69. EspC is involved in controlling the timing of development in Myxococcus xanthus.
    Lee B; Higgs PI; Zusman DR; Cho K
    J Bacteriol; 2005 Jul; 187(14):5029-31. PubMed ID: 15995222
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Genes required for both gliding motility and development in Myxococcus xanthus.
    MacNeil SD; Mouzeyan A; Hartzell PL
    Mol Microbiol; 1994 Nov; 14(4):785-95. PubMed ID: 7891564
    [TBL] [Abstract][Full Text] [Related]  

  • 71. TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus.
    Rasmussen AA; Søgaard-Andersen L
    J Bacteriol; 2003 Sep; 185(18):5452-64. PubMed ID: 12949097
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparative genomic analysis of fruiting body formation in Myxococcales.
    Huntley S; Hamann N; Wegener-Feldbrügge S; Treuner-Lange A; Kube M; Reinhardt R; Klages S; Müller R; Ronning CM; Nierman WC; Søgaard-Andersen L
    Mol Biol Evol; 2011 Feb; 28(2):1083-97. PubMed ID: 21037205
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus.
    O'Connor KA; Zusman DR
    J Bacteriol; 1991 Jun; 173(11):3342-55. PubMed ID: 1904432
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Starvation-independent sporulation in Myxococcus xanthus involves the pathway for beta-lactamase induction and provides a mechanism for competitive cell survival.
    O'Connor KA; Zusman DR
    Mol Microbiol; 1997 May; 24(4):839-50. PubMed ID: 9194710
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regulations governing the multicellular lifestyle of Myxococcus xanthus.
    Mercier R; Mignot T
    Curr Opin Microbiol; 2016 Dec; 34():104-110. PubMed ID: 27648756
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell density, alignment, and orientation correlate with C-signal-dependent gene expression during
    Hoang Y; Franklin JL; Dufour YS; Kroos L
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34732578
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Operon required for fruiting body development in Myxococcus xanthus.
    Kim D; Chung J; Hyun H; Lee C; Lee K; Cho K
    J Microbiol Biotechnol; 2009 Nov; 19(11):1288-94. PubMed ID: 19996678
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification and characterization of spdR mutations that bypass the BsgA protease-dependent regulation of developmental gene expression in Myxococcus xanthus.
    Hager E; Tse H; Gill RE
    Mol Microbiol; 2001 Feb; 39(3):765-80. PubMed ID: 11169116
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Trehalose biosynthesis in Myxococcus xanthus under osmotic stress and during spore formation.
    Kimura Y; Kawasaki S; Tuchimoto R; Tanaka N
    J Biochem; 2014 Jan; 155(1):17-24. PubMed ID: 24098011
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The Myxococcus xanthus wbgB gene encodes a glycosyltransferase homologue required for lipopolysaccharide O-antigen biosynthesis.
    Yang Z; Guo D; Bowden MG; Sun H; Tong L; Li Z; Brown AE; Kaplan HB; Shi W
    Arch Microbiol; 2000 Dec; 174(6):399-405. PubMed ID: 11195095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.