These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19788567)

  • 1. Dissociable substrates for body motion and physical experience in the human action observation network.
    Cross ES; Hamilton AF; Kraemer DJ; Kelley WM; Grafton ST
    Eur J Neurosci; 2009 Oct; 30(7):1383-92. PubMed ID: 19788567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding actors and object-goals in the human brain.
    Ramsey R; Hamilton AF
    Neuroimage; 2010 Apr; 50(3):1142-7. PubMed ID: 20060912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual features of an observed agent do not modulate human brain activity during action observation.
    Turella L; Erb M; Grodd W; Castiello U
    Neuroimage; 2009 Jul; 46(3):844-53. PubMed ID: 19285143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network.
    Kirsch LP; Cross ES
    Cereb Cortex; 2015 Dec; 25(12):4799-811. PubMed ID: 26209850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromagnetic response to body motion and brain connectivity.
    Pavlova M; Bidet-Ildei C; Sokolov AN; Braun C; Krägeloh-Mann I
    J Cogn Neurosci; 2009 May; 21(5):837-46. PubMed ID: 18578605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Object presence modulates activity within the somatosensory component of the action observation network.
    Turella L; Tubaldi F; Erb M; Grodd W; Castiello U
    Cereb Cortex; 2012 Mar; 22(3):668-79. PubMed ID: 21690260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moving and being moved: differences in cerebral activation during recollection of whole-body motion.
    Wutte MG; Glasauer S; Jahn K; Flanagin VL
    Behav Brain Res; 2012 Feb; 227(1):21-9. PubMed ID: 22040905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple brain networks for visual self-recognition with different sensitivity for motion and body part.
    Sugiura M; Sassa Y; Jeong H; Miura N; Akitsuki Y; Horie K; Sato S; Kawashima R
    Neuroimage; 2006 Oct; 32(4):1905-17. PubMed ID: 16806977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot.
    Miura N; Sugiura M; Takahashi M; Sassa Y; Miyamoto A; Sato S; Horie K; Nakamura K; Kawashima R
    Soc Neurosci; 2010; 5(1):40-58. PubMed ID: 19585386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task.
    Callan DE; Terzibas C; Cassel DB; Callan A; Kawato M; Sato MA
    Neuroimage; 2013 May; 72():55-68. PubMed ID: 23357079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Don't do it! Cortical inhibition and self-attribution during action observation.
    Schütz-Bosbach S; Avenanti A; Aglioti SM; Haggard P
    J Cogn Neurosci; 2009 Jun; 21(6):1215-27. PubMed ID: 18702585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic modulation of the action observation network by movement familiarity.
    Gardner T; Goulden N; Cross ES
    J Neurosci; 2015 Jan; 35(4):1561-72. PubMed ID: 25632133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain mechanisms for preparing increasingly complex sensory to motor transformations.
    Gorbet DJ; Staines WR; Sergio LE
    Neuroimage; 2004 Nov; 23(3):1100-11. PubMed ID: 15528110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animated brain: a functional neuroimaging study on animacy experience.
    Santos NS; Kuzmanovic B; David N; Rotarska-Jagiela A; Eickhoff SB; Shah JN; Fink GR; Bente G; Vogeley K
    Neuroimage; 2010 Oct; 53(1):291-302. PubMed ID: 20570742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action observation and acquired motor skills: an FMRI study with expert dancers.
    Calvo-Merino B; Glaser DE; Grèzes J; Passingham RE; Haggard P
    Cereb Cortex; 2005 Aug; 15(8):1243-9. PubMed ID: 15616133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do we infer others' goals from non-stereotypic actions? The outcome of context-sensitive inferential processing in right inferior parietal and posterior temporal cortex.
    Liepelt R; Von Cramon DY; Brass M
    Neuroimage; 2008 Dec; 43(4):784-92. PubMed ID: 18773963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. I learned from what you did: Retrieving visuomotor associations learned by observation.
    Monfardini E; Brovelli A; Boussaoud D; Takerkart S; Wicker B
    Neuroimage; 2008 Sep; 42(3):1207-13. PubMed ID: 18588987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using guitar learning to probe the Action Observation Network's response to visuomotor familiarity.
    Gardner T; Aglinskas A; Cross ES
    Neuroimage; 2017 Aug; 156():174-189. PubMed ID: 28479473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action observation has a positive impact on rehabilitation of motor deficits after stroke.
    Ertelt D; Small S; Solodkin A; Dettmers C; McNamara A; Binkofski F; Buccino G
    Neuroimage; 2007; 36 Suppl 2():T164-73. PubMed ID: 17499164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.