BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19788576)

  • 41. The binaural auditory pathway: membrane currents limiting multiple action potential generation in the rat medial nucleus of the trapezoid body.
    Forsythe ID; Barnes-Davies M
    Proc Biol Sci; 1993 Feb; 251(1331):143-50. PubMed ID: 8096080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Shift from depolarizing to hyperpolarizing glycine action occurs at different perinatal ages in superior olivary complex nuclei.
    Löhrke S; Srinivasan G; Oberhofer M; Doncheva E; Friauf E
    Eur J Neurosci; 2005 Dec; 22(11):2708-22. PubMed ID: 16324105
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrophysiological properties of ventral cochlear nucleus neurons of the dog.
    Bal R; Baydas G; Naziroglu M
    Hear Res; 2009 Oct; 256(1-2):93-103. PubMed ID: 19615433
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of excitatory synaptic transmission to the superior paraolivary and lateral superior olivary nuclei optimizes differential decoding strategies.
    Felix RA; Magnusson AK
    Neuroscience; 2016 Oct; 334():1-12. PubMed ID: 27476438
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.
    Pasic TR; Moore DR; Rubel EW
    J Comp Neurol; 1994 Oct; 348(1):111-20. PubMed ID: 7814680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterisation of hyperpolarization-activated currents (I(h)) in the medial septum/diagonal band complex in the mouse.
    Morris NP; Fyffe RE; Robertson B
    Brain Res; 2004 Apr; 1006(1):74-86. PubMed ID: 15047026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hyperpolarization-activated cyclic nucleotide-gated channels in mouse vomeronasal sensory neurons.
    Dibattista M; Mazzatenta A; Grassi F; Tirindelli R; Menini A
    J Neurophysiol; 2008 Aug; 100(2):576-86. PubMed ID: 18509074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive.
    Tollin DJ; Yin TC
    J Neurosci; 2005 Nov; 25(46):10648-57. PubMed ID: 16291937
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of cochlear ablation on calbindin and synaptophysin in the gerbil medial nucleus of the trapezoid body before hearing onset.
    Bazwinsky-Wutschke I; Dehghani F
    J Chem Neuroanat; 2021 Dec; 118():102023. PubMed ID: 34481914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Noise reduction in the nervous system. Focus on "Enhancement of ITD coding within the initial stages of the auditory pathway".
    Christianson GB
    J Neurophysiol; 2010 Jan; 103(1):1. PubMed ID: 19889845
    [No Abstract]   [Full Text] [Related]  

  • 52. Urocortin-expressing olivocochlear neurons exhibit tonotopic and developmental changes in the auditory brainstem and in the innervation of the cochlea.
    Kaiser A; Alexandrova O; Grothe B
    J Comp Neurol; 2011 Oct; 519(14):2758-78. PubMed ID: 21491428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kv3.1 and Kv3.3 subunits differentially contribute to Kv3 channels and action potential repolarization in principal neurons of the auditory brainstem.
    Choudhury N; Linley D; Richardson A; Anderson M; Robinson SW; Marra V; Ciampani V; Walter SM; Kopp-Scheinpflug C; Steinert JR; Forsythe ID
    J Physiol; 2020 Jun; 598(11):2199-2222. PubMed ID: 32246836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.
    Franzen DL; Gleiss SA; Berger C; Kümpfbeck FS; Ammer JJ; Felmy F
    J Neurophysiol; 2015 Jan; 113(2):524-36. PubMed ID: 25355963
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Input from the medial nucleus of trapezoid body to an interaural level detector.
    Tsuchitani C
    Hear Res; 1997 Mar; 105(1-2):211-24. PubMed ID: 9083818
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness.
    Leao RN; Sun H; Svahn K; Berntson A; Youssoufian M; Paolini AG; Fyffe RE; Walmsley B
    J Physiol; 2006 Mar; 571(Pt 3):563-78. PubMed ID: 16373385
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway.
    Alamilla J; Gillespie DC
    PLoS One; 2013; 8(9):e75688. PubMed ID: 24069436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus.
    Lee J; Clause A; Kandler K
    J Neurosci; 2023 Nov; 43(46):7766-7779. PubMed ID: 37734946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational principles of neural adaptation for binaural signal integration.
    Oess T; Ernst MO; Neumann H
    PLoS Comput Biol; 2020 Jul; 16(7):e1008020. PubMed ID: 32678847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intrinsic and Miniature Postsynaptic Current Changes in Rat Principal Neurons of the Lateral Superior Olive after Unilateral Auditory Deprivation at an Early Age.
    Zhou M; Yuan J; Yan Z; Dai J; Wang X; Xu T; Xu Z; Wang N; Liu J
    Neuroscience; 2020 Jan; 428():2-12. PubMed ID: 31866557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.