BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 19788945)

  • 1. Magnesium alloys as implant materials--principles of property design for Mg-RE alloys.
    Hort N; Huang Y; Fechner D; Störmer M; Blawert C; Witte F; Vogt C; Drücker H; Willumeit R; Kainer KU; Feyerabend F
    Acta Biomater; 2010 May; 6(5):1714-25. PubMed ID: 19788945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application.
    Zhang E; Yang L; Xu J; Chen H
    Acta Biomater; 2010 May; 6(5):1756-62. PubMed ID: 19941979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.
    Kannan MB; Raman RK
    Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance.
    Bornapour M; Celikin M; Cerruti M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials.
    Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J
    J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.
    Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process.
    Wang HX; Guan SK; Wang X; Ren CX; Wang LG
    Acta Biomater; 2010 May; 6(5):1743-8. PubMed ID: 20004746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress of in vivo study on degradable magnesium alloys application as bone-implant materials].
    Qi Z; Zhang Q; Yin Y; Wang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1381-6. PubMed ID: 23230677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure, mechanical and corrosion properties of Mg-Dy-Gd-Zr alloys for medical applications.
    Yang L; Huang Y; Feyerabend F; Willumeit R; Mendis C; Kainer KU; Hort N
    Acta Biomater; 2013 Nov; 9(10):8499-508. PubMed ID: 23523938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials.
    Brar HS; Wong J; Manuel MV
    J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design strategy for biodegradable Fe-based alloys for medical applications.
    Schinhammer M; Hänzi AC; Löffler JF; Uggowitzer PJ
    Acta Biomater; 2010 May; 6(5):1705-13. PubMed ID: 19654056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.
    Shi LL; Huang Y; Yang L; Feyerabend F; Mendis C; Willumeit R; Ulrich Kainer K; Hort N
    J Mech Behav Biomed Mater; 2015 Jul; 47():38-48. PubMed ID: 25837343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.
    Zhou WR; Zheng YF; Leeflang MA; Zhou J
    Acta Biomater; 2013 Nov; 9(10):8488-98. PubMed ID: 23385218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo corrosion of four magnesium alloys and the associated bone response.
    Witte F; Kaese V; Haferkamp H; Switzer E; Meyer-Lindenberg A; Wirth CJ; Windhagen H
    Biomaterials; 2005 Jun; 26(17):3557-63. PubMed ID: 15621246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.
    Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium and its alloys as orthopedic biomaterials: a review.
    Staiger MP; Pietak AM; Huadmai J; Dias G
    Biomaterials; 2006 Mar; 27(9):1728-34. PubMed ID: 16246414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.
    Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application.
    Xu L; Yu G; Zhang E; Pan F; Yang K
    J Biomed Mater Res A; 2007 Dec; 83(3):703-11. PubMed ID: 17549695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.