These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 19789116)

  • 1. Construction of gene networks with hybrid approach from expression profile and gene ontology.
    Jing L; Ng MK; Liu Y
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):107-18. PubMed ID: 19789116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.
    Qian J; Dolled-Filhart M; Lin J; Yu H; Gerstein M
    J Mol Biol; 2001 Dec; 314(5):1053-66. PubMed ID: 11743722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach for modelling gene regulatory networks using fuzzy petri nets.
    Hamed RI; Ahson SI; Parveen R
    J Integr Bioinform; 2010 Feb; 7(1):. PubMed ID: 20134077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid Bayesian network learning method for constructing gene networks.
    Wang M; Chen Z; Cloutier S
    Comput Biol Chem; 2007 Oct; 31(5-6):361-72. PubMed ID: 17889617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enriching regulatory networks by bootstrap learning using optimised GO-based gene similarity and gene links mined from PubMed abstracts.
    Taylor RC; Sanfilippo A; McDermott JE; Baddeley B; Riensche R; Jensen R; Verhagen M; Pustejovsky J
    Int J Comput Biol Drug Des; 2011; 4(1):56-82. PubMed ID: 21330694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring gene regulatory networks by integrating static and dynamic data.
    Ferrazzi F; Magni P; Sacchi L; Nuzzo A; Petrovic U; Bellazzi R
    Int J Med Inform; 2007 Dec; 76 Suppl 3():S462-75. PubMed ID: 17825607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering distinct patterns in gene expression profiles.
    Teng L; Chan L
    J Integr Bioinform; 2008 Aug; 5(2):. PubMed ID: 20134072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression.
    Sugimoto N; Iba H
    Genome Inform; 2004; 15(2):121-30. PubMed ID: 15706498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring gene regulatory relationships by combining target-target pattern recognition and regulator-specific motif examination.
    Wei H; Kaznessis Y
    Biotechnol Bioeng; 2005 Jan; 89(1):53-77. PubMed ID: 15540196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to decide which are the most pertinent overly-represented features during gene set enrichment analysis.
    Barriot R; Sherman DJ; Dutour I
    BMC Bioinformatics; 2007 Sep; 8():332. PubMed ID: 17848190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new multiple regression approach for the construction of genetic regulatory networks.
    Zhang SQ; Ching WK; Tsing NK; Leung HY; Guo D
    Artif Intell Med; 2010; 48(2-3):153-60. PubMed ID: 19963359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T; Keating AE
    BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying drug active pathways from gene networks estimated by gene expression data.
    Tamada Y; Imoto S; Tashiro K; Kuhara S; Miyano S
    Genome Inform; 2005; 16(1):182-91. PubMed ID: 16362921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replaying the evolutionary tape: biomimetic reverse engineering of gene networks.
    Marbach D; Mattiussi C; Floreano D
    Ann N Y Acad Sci; 2009 Mar; 1158():234-45. PubMed ID: 19348645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
    Wang M; Augusto Benedito V; Xuechun Zhao P; Udvardi M
    Mol Biosyst; 2010 Jun; 6(6):988-98. PubMed ID: 20485743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational methods for discovering gene networks from expression data.
    Lee WP; Tzou WS
    Brief Bioinform; 2009 Jul; 10(4):408-23. PubMed ID: 19505889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning regulatory programs that accurately predict differential expression with MEDUSA.
    Kundaje A; Lianoglou S; Li X; Quigley D; Arias M; Wiggins CH; Zhang L; Leslie C
    Ann N Y Acad Sci; 2007 Dec; 1115():178-202. PubMed ID: 17934055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse-engineering transcriptional modules from gene expression data.
    Michoel T; De Smet R; Joshi A; Marchal K; Van de Peer Y
    Ann N Y Acad Sci; 2009 Mar; 1158():36-43. PubMed ID: 19348630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.