These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Transient and reversible deoxyribonucleic acid damage in human left ventricle under controlled ischemia and reperfusion. Corbucci GG; Perrino C; Donato G; Ricchi A; Lettieri B; Troncone G; Indolfi C; Chiariello M; Avvedimento EV J Am Coll Cardiol; 2004 Jun; 43(11):1992-9. PubMed ID: 15172403 [TBL] [Abstract][Full Text] [Related]
23. Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes. Kang SM; Lim S; Song H; Chang W; Lee S; Bae SM; Chung JH; Lee H; Kim HG; Yoon DH; Kim TW; Jang Y; Sung JM; Chung NS; Hwang KC Eur J Pharmacol; 2006 Mar; 535(1-3):212-9. PubMed ID: 16516885 [TBL] [Abstract][Full Text] [Related]
24. Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 degrees C ischemia in intact hearts. Riess ML; Camara AK; Kevin LG; An J; Stowe DF Cardiovasc Res; 2004 Feb; 61(3):580-90. PubMed ID: 14962488 [TBL] [Abstract][Full Text] [Related]
25. Fetal programming of atherosclerosis: possible role of the mitochondria. Leduc L; Levy E; Bouity-Voubou M; Delvin E Eur J Obstet Gynecol Reprod Biol; 2010 Apr; 149(2):127-30. PubMed ID: 20053495 [TBL] [Abstract][Full Text] [Related]
26. Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Stewart S; Lesnefsky EJ; Chen Q Transl Res; 2009 May; 153(5):224-31. PubMed ID: 19375683 [TBL] [Abstract][Full Text] [Related]
29. The oxidative stress concept of nitrate tolerance and the antioxidant properties of hydralazine. Daiber A; Mülsch A; Hink U; Mollnau H; Warnholtz A; Oelze M; Münzel T Am J Cardiol; 2005 Oct; 96(7B):25i-36i. PubMed ID: 16226933 [TBL] [Abstract][Full Text] [Related]
30. Oxidative and nitrosative stress in the maintenance of myocardial function. Zhang Y; Tocchetti CG; Krieg T; Moens AL Free Radic Biol Med; 2012 Oct; 53(8):1531-40. PubMed ID: 22819981 [TBL] [Abstract][Full Text] [Related]
31. Free radicals in disease. Hogg N Semin Reprod Endocrinol; 1998; 16(4):241-8. PubMed ID: 10101806 [TBL] [Abstract][Full Text] [Related]
32. Reactive oxygen species and oxidative DNA damage. Hemnani T; Parihar MS Indian J Physiol Pharmacol; 1998 Oct; 42(4):440-52. PubMed ID: 10874342 [TBL] [Abstract][Full Text] [Related]
33. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Raedschelders K; Ansley DM; Chen DD Pharmacol Ther; 2012 Feb; 133(2):230-55. PubMed ID: 22138603 [TBL] [Abstract][Full Text] [Related]
34. Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury. Zhou T; Chuang CC; Zuo L Biomed Res Int; 2015; 2015():864946. PubMed ID: 26509170 [TBL] [Abstract][Full Text] [Related]
35. Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes. Zhao D; Yang J; Yang L Oxid Med Cell Longev; 2017; 2017():6437467. PubMed ID: 28298952 [TBL] [Abstract][Full Text] [Related]
36. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Musatov A; Robinson NC Free Radic Res; 2012 Nov; 46(11):1313-26. PubMed ID: 22856385 [TBL] [Abstract][Full Text] [Related]
37. Oxidative stress, Noxs, and hypertension: experimental evidence and clinical controversies. Montezano AC; Touyz RM Ann Med; 2012 Jun; 44 Suppl 1():S2-16. PubMed ID: 22713144 [TBL] [Abstract][Full Text] [Related]
38. Reactive oxygen and mechanisms of inflammatory liver injury: Present concepts. Jaeschke H J Gastroenterol Hepatol; 2011 Jan; 26 Suppl 1():173-9. PubMed ID: 21199529 [TBL] [Abstract][Full Text] [Related]
39. Reperfusion injury and reactive oxygen species: The evolution of a concept. Granger DN; Kvietys PR Redox Biol; 2015 Dec; 6():524-551. PubMed ID: 26484802 [TBL] [Abstract][Full Text] [Related]