These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19789527)

  • 61. Point-spread function synthesis in scanning holographic microscopy.
    Indebetouw G; Zhong W; Chamberlin-Long D
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1708-17. PubMed ID: 16783435
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Gridding spot centers of smoothly distorted microarray images.
    Ho J; Hwang WL; Lu HH; Lee DT
    IEEE Trans Image Process; 2006 Feb; 15(2):342-53. PubMed ID: 16479804
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach.
    Freiberger M; Clason C; Scharfetter H
    Appl Opt; 2010 Jul; 49(19):3741-7. PubMed ID: 20648140
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparison of pre-processing techniques for fluorescence microscopy images of cells labeled for actin.
    Muralidhar GS; Channappayya SS; Slater JH; Blinka EM; Bovik AC; Frey W; Markey MK
    AMIA Annu Symp Proc; 2008 Nov; ():1044. PubMed ID: 18999196
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth.
    Kepshire DS; Davis SC; Dehghani H; Paulsen KD; Pogue BW
    Appl Opt; 2007 Apr; 46(10):1669-78. PubMed ID: 17356609
    [TBL] [Abstract][Full Text] [Related]  

  • 66. ELB-Q: a new method for improving the robustness in DNA microarray image quantification.
    Ma MQ; Zhang K; Wang HY; Shih FY
    IEEE Trans Inf Technol Biomed; 2007 Sep; 11(5):574-82. PubMed ID: 17912974
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue.
    Wu Y; Qu JY
    Opt Lett; 2005 Nov; 30(22):3045-7. PubMed ID: 16315716
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Logarithmic intensity compression in fluorescence guided surgery applications.
    DSouza AV; Lin H; Gunn J; Pogue BW
    J Biomed Opt; 2015 Aug; 20(8):80504. PubMed ID: 26305450
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microarray image enhancement by denoising using stationary wavelet transform.
    Wang XH; Istepanian RS; Song YH
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):184-9. PubMed ID: 15376907
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination.
    Gustafsson MG; Shao L; Carlton PM; Wang CJ; Golubovskaya IN; Cande WZ; Agard DA; Sedat JW
    Biophys J; 2008 Jun; 94(12):4957-70. PubMed ID: 18326650
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fully linear reconstruction method for fluorescence yield and lifetime through inverse complex-source formulation: simulation studies.
    Gao H; Lin Y; Gulsen G; Zhao H
    Opt Lett; 2010 Jun; 35(11):1899-901. PubMed ID: 20517455
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals.
    Bergeest JP; Rohr K
    Med Image Anal; 2012 Oct; 16(7):1436-44. PubMed ID: 22795525
    [TBL] [Abstract][Full Text] [Related]  

  • 73. MicroPreP: a cDNA microarray data pre-processing framework.
    van Hijum SA; García de la Nava J; Trelles O; Kok J; Kuipers OP
    Appl Bioinformatics; 2003; 2(4):241-4. PubMed ID: 15130795
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-speed confocal fluorescence imaging with a novel line scanning microscope.
    Wolleschensky R; Zimmermann B; Kempe M
    J Biomed Opt; 2006; 11(6):064011. PubMed ID: 17212534
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An original genetic approach to the fully automatic gridding of microarray images.
    Zacharia E; Maroulis D
    IEEE Trans Med Imaging; 2008 Jun; 27(6):805-13. PubMed ID: 18541487
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Background correction for cDNA microarray images using the TV+L1 model.
    Yin W; Chen T; Zhou SX; Chakraborty A
    Bioinformatics; 2005 May; 21(10):2410-6. PubMed ID: 15728112
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analytical description of high-aperture STED resolution with 0-2π vortex phase modulation.
    Xie H; Liu Y; Jin D; Santangelo PJ; Xi P
    J Opt Soc Am A Opt Image Sci Vis; 2013 Aug; 30(8):1640-5. PubMed ID: 24323224
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Rao-Blackwellized marginal particle filtering for multiple object tracking in molecular bioimaging.
    Smal I; Draegestein K; Galjart N; Niessen W; Meijering E
    Inf Process Med Imaging; 2007; 20():110-21. PubMed ID: 17633693
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Real-time processing and compression of DNA microarray images.
    Samavi S; Shirani S; Karimi N
    IEEE Trans Image Process; 2006 Mar; 15(3):754-66. PubMed ID: 16519360
    [TBL] [Abstract][Full Text] [Related]  

  • 80. New software methods to cope with reduced counting statistics: shorter SPECT acquisitions and many more possibilities.
    Depuey EG
    J Nucl Cardiol; 2009; 16(3):335-8. PubMed ID: 19399568
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.