These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19789709)

  • 1. The origin and initial rise of pelagic cephalopods in the Ordovician.
    Kröger B; Servais T; Zhang Y
    PLoS One; 2009 Sep; 4(9):e7262. PubMed ID: 19789709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primitive soft-bodied cephalopods from the Cambrian.
    Smith MR; Caron JB
    Nature; 2010 May; 465(7297):469-72. PubMed ID: 20505727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palaeoecology of Cambrian-Ordovician acritarchs from China: evidence for a progressive invasion of the marine habitats.
    Shan L; Yan K; Zhang Y; Li J; Servais T
    Philos Trans R Soc Lond B Biol Sci; 2022 Mar; 377(1847):20210035. PubMed ID: 35125001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules: Extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators.
    Kröger B; Vinther J; Fuchs D
    Bioessays; 2011 Aug; 33(8):602-13. PubMed ID: 21681989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician Radiation.
    Miller AI
    Paleobiology; 1997; 23(4):410-9. PubMed ID: 11541189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Southern Ocean cephalopods.
    Collins MA; Rodhouse PG
    Adv Mar Biol; 2006; 50():191-265. PubMed ID: 16782452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional traits explain trophic allometries of cephalopods.
    Murphy KJ; Pecl GT; Richards SA; Semmens JM; Revill AT; Suthers IM; Everett JD; Trebilco R; Blanchard JL
    J Anim Ecol; 2020 Nov; 89(11):2692-2703. PubMed ID: 32895913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The study of deep-sea cephalopods.
    Hoving HJ; Perez JA; Bolstad KS; Braid HE; Evans AB; Fuchs D; Judkins H; Kelly JT; Marian JE; Nakajima R; Piatkowski U; Reid A; Vecchione M; Xavier JC
    Adv Mar Biol; 2014; 67():235-359. PubMed ID: 24880796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale diversity patterns of cephalopods in the Atlantic open ocean and deep sea.
    Rosa R; Dierssen HM; Gonzalez L; Seibel BA
    Ecology; 2008 Dec; 89(12):3449-61. PubMed ID: 19137950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution.
    Tanner AR; Fuchs D; Winkelmann IE; Gilbert MT; Pankey MS; Ribeiro ÂM; Kocot KM; Halanych KM; Oakley TH; da Fonseca RR; Pisani D; Vinther J
    Proc Biol Sci; 2017 Mar; 284(1850):. PubMed ID: 28250188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative diversification dynamics among palaeocontinents during the Ordovician Radiation.
    Miller AI
    Geobios Mem Spec; 1997; 20():397-406. PubMed ID: 11541286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras.
    LoDuca ST; Bykova N; Wu M; Xiao S; Zhao Y
    Geobiology; 2017 Jul; 15(4):588-616. PubMed ID: 28603844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment.
    Lindgren AR; Pankey MS; Hochberg FG; Oakley TH
    BMC Evol Biol; 2012 Jul; 12():129. PubMed ID: 22839506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends.
    Miller AI; Foote M
    Paleobiology; 1996; 22(2):304-9. PubMed ID: 11539204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Liexi fauna: a new Lagerstätte from the Lower Ordovician of South China.
    Fang X; Mao Y; Liu Q; Yuan W; Chen Z; Wu R; Li L; Zhang Y; Ma J; Wang W; Zhan R; Peng S; Zhang Y; Huang D
    Proc Biol Sci; 2022 Jul; 289(1978):20221027. PubMed ID: 35858062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Cambrian origin of modern food webs: evidence from predator arrow worms.
    Vannier J; Steiner M; Renvoisé E; Hu SX; Casanova JP
    Proc Biol Sci; 2007 Mar; 274(1610):627-33. PubMed ID: 17254986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bryozoans from the Early Ordovician Fenhsiang Formation (Tremadocian) of South China and the early diversification of the phylum.
    Ma J; Taylor PD; Buttler CJ; Xia F
    Naturwissenschaften; 2022 Mar; 109(2):21. PubMed ID: 35333983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A potential cephalopod from the early Cambrian of eastern Newfoundland, Canada.
    Hildenbrand A; Austermann G; Fuchs D; Bengtson P; Stinnesbeck W
    Commun Biol; 2021 Mar; 4(1):388. PubMed ID: 33758350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ancient origin of the modern deep-sea fauna.
    Thuy B; Gale AS; Kroh A; Kucera M; Numberger-Thuy LD; Reich M; Stöhr S
    PLoS One; 2012; 7(10):e46913. PubMed ID: 23071660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited role of functional differentiation in early diversification of animals.
    Knope ML; Heim NA; Frishkoff LO; Payne JL
    Nat Commun; 2015 Mar; 6():6455. PubMed ID: 25737406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.