These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
708 related articles for article (PubMed ID: 19789750)
1. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array. Han KH; Han SI; Frazier AB Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750 [TBL] [Abstract][Full Text] [Related]
2. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Han KH; Frazier AB Lab Chip; 2008 Jul; 8(7):1079-86. PubMed ID: 18584082 [TBL] [Abstract][Full Text] [Related]
3. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Choi S; Park JK Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274 [TBL] [Abstract][Full Text] [Related]
6. Lateral dielectrophoretic microseparators to measure the size distribution of blood cells. Han SI; Lee SM; Joo YD; Han KH Lab Chip; 2011 Nov; 11(22):3864-72. PubMed ID: 21964758 [TBL] [Abstract][Full Text] [Related]
7. A continuous size-dependent particle separator using a negative dielectrophoretic virtual pillar array. Chang S; Cho YH Lab Chip; 2008 Nov; 8(11):1930-6. PubMed ID: 18941695 [TBL] [Abstract][Full Text] [Related]
8. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Chu H; Doh I; Cho YH Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018 [TBL] [Abstract][Full Text] [Related]
9. Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate. Cheng W; Li SZ; Zeng Q; Yu XL; Wang Y; Chan HL; Liu W; Guo SS; Zhao XZ Electrophoresis; 2011 Nov; 32(23):3371-7. PubMed ID: 22058049 [TBL] [Abstract][Full Text] [Related]
10. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS; Song SH; Jung HI Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305 [TBL] [Abstract][Full Text] [Related]
11. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Choi S; Park JK Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes. Jen CP; Weng CH; Huang CT Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653 [TBL] [Abstract][Full Text] [Related]
13. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158 [TBL] [Abstract][Full Text] [Related]
15. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N; Yang C; Lam YC Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920 [TBL] [Abstract][Full Text] [Related]
16. Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. Khoshmanesh K; Zhang C; Tovar-Lopez FJ; Nahavandi S; Baratchi S; Kalantar-zadeh K; Mitchell A Electrophoresis; 2009 Nov; 30(21):3707-17. PubMed ID: 19810028 [TBL] [Abstract][Full Text] [Related]
17. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics. Tirapu-Azpiroz J; Temiz Y; Delamarche E Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438 [TBL] [Abstract][Full Text] [Related]
18. Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Park K; Suk HJ; Akin D; Bashir R Lab Chip; 2009 Aug; 9(15):2224-9. PubMed ID: 19606300 [TBL] [Abstract][Full Text] [Related]
19. Inertial microfluidics for continuous particle separation in spiral microchannels. Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752 [TBL] [Abstract][Full Text] [Related]
20. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Bernabini C; Holmes D; Morgan H Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]