BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

866 related articles for article (PubMed ID: 19789760)

  • 1. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-loading and cell culture in one layer microfluidic devices.
    Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y
    Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications.
    Pavesi A; Piraino F; Fiore GB; Farino KM; Moretti M; Rasponi M
    Lab Chip; 2011 May; 11(9):1593-5. PubMed ID: 21437315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Cotman C; Jeon NL
    J Vis Exp; 2007; (9):410. PubMed ID: 18989450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications.
    Mosadegh B; Agarwal M; Torisawa YS; Takayama S
    Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture.
    Puleo CM; McIntosh Ambrose W; Takezawa T; Elisseeff J; Wang TH
    Lab Chip; 2009 Nov; 9(22):3221-7. PubMed ID: 19865728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast microfluidic temperature control for high resolution live cell imaging.
    Velve Casquillas G; Fu C; Le Berre M; Cramer J; Meance S; Plecis A; Baigl D; Greffet JJ; Chen Y; Piel M; Tran PT
    Lab Chip; 2011 Feb; 11(3):484-9. PubMed ID: 21103458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastic masters-rigid templates for soft lithography.
    Desai SP; Freeman DM; Voldman J
    Lab Chip; 2009 Jun; 9(11):1631-7. PubMed ID: 19458873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical sensing with a polymer-based micromachined Fabry-Perot sensor.
    Zhang T; Talla S; Gong Z; Karandikar S; Giorno R; Que L
    Opt Express; 2010 Aug; 18(17):18394-400. PubMed ID: 20721233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating polyurethane culture substrates into poly(dimethylsiloxane) microdevices.
    Moraes C; Kagoma YK; Beca BM; Tonelli-Zasarsky RL; Sun Y; Simmons CA
    Biomaterials; 2009 Oct; 30(28):5241-50. PubMed ID: 19545891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels.
    Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C
    Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.