These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
863 related articles for article (PubMed ID: 19789760)
1. Fabrication of reversibly adhesive fluidic devices using magnetism. Rafat M; Raad DR; Rowat AC; Auguste DT Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760 [TBL] [Abstract][Full Text] [Related]
2. Self-loading and cell culture in one layer microfluidic devices. Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238 [TBL] [Abstract][Full Text] [Related]
3. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Wu H; Huang B; Zare RN Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971 [TBL] [Abstract][Full Text] [Related]
4. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices. Hung LH; Lin R; Lee AP Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921 [TBL] [Abstract][Full Text] [Related]
5. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Pavesi A; Piraino F; Fiore GB; Farino KM; Moretti M; Rasponi M Lab Chip; 2011 May; 11(9):1593-5. PubMed ID: 21437315 [TBL] [Abstract][Full Text] [Related]
6. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices. Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Cotman C; Jeon NL J Vis Exp; 2007; (9):410. PubMed ID: 18989450 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications. Mosadegh B; Agarwal M; Torisawa YS; Takayama S Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832 [TBL] [Abstract][Full Text] [Related]
10. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS). Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874 [TBL] [Abstract][Full Text] [Related]
11. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Kim SM; Burns MA; Hasselbrink EF Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895 [TBL] [Abstract][Full Text] [Related]
12. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Kim J; Surapaneni R; Gale BK Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251 [TBL] [Abstract][Full Text] [Related]
13. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Nock V; Blaikie RJ; David T Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072 [TBL] [Abstract][Full Text] [Related]
14. Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture. Puleo CM; McIntosh Ambrose W; Takezawa T; Elisseeff J; Wang TH Lab Chip; 2009 Nov; 9(22):3221-7. PubMed ID: 19865728 [TBL] [Abstract][Full Text] [Related]
15. Fast microfluidic temperature control for high resolution live cell imaging. Velve Casquillas G; Fu C; Le Berre M; Cramer J; Meance S; Plecis A; Baigl D; Greffet JJ; Chen Y; Piel M; Tran PT Lab Chip; 2011 Feb; 11(3):484-9. PubMed ID: 21103458 [TBL] [Abstract][Full Text] [Related]