These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19789769)

  • 1. One- and two-electron reduction of molybdate reversibly bound to the archaeal tungstate/molybdate transporter WtpA.
    Bevers LE; Hagen WR
    Dalton Trans; 2009 Oct; (39):8168-70. PubMed ID: 19789769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters.
    Bevers LE; Hagedoorn PL; Krijger GC; Hagen WR
    J Bacteriol; 2006 Sep; 188(18):6498-505. PubMed ID: 16952940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus.
    Sevcenco AM; Bevers LE; Pinkse MW; Krijger GC; Wolterbeek HT; Verhaert PD; Hagen WR; Hagedoorn PL
    J Bacteriol; 2010 Aug; 192(16):4143-52. PubMed ID: 20562313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins.
    Hollenstein K; Comellas-Bigler M; Bevers LE; Feiters MC; Meyer-Klaucke W; Hagedoorn PL; Locher KP
    J Biol Inorg Chem; 2009 Jun; 14(5):663-72. PubMed ID: 19234723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tungsten metallome of Pyrococcus furiosus.
    Sevcenco AM; Pinkse MW; Bol E; Krijger GC; Wolterbeek HT; Verhaert PD; Hagedoorn PL; Hagen WR
    Metallomics; 2009 Sep; 1(5):395-402. PubMed ID: 21305143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox chemistry of tungsten and iron-sulfur prosthetic groups in Pyrococcus furiosus formaldehyde ferredoxin oxidoreductase.
    Bol E; Bevers LE; Hagedoorn PL; Hagen WR
    J Biol Inorg Chem; 2006 Nov; 11(8):999-1006. PubMed ID: 16924554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state kinetics of the tungsten containing aldehyde: ferredoxin oxidoreductases from the hyperthermophilic archaeon Pyrococcus furiosus.
    Hagedoorn PL
    J Biotechnol; 2019 Dec; 306():142-148. PubMed ID: 31589889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular basis for tungstate selectivity in prokaryotic ABC transport systems.
    Bevers LE; Schwarz G; Hagen WR
    J Bacteriol; 2011 Sep; 193(18):4999-5001. PubMed ID: 21784948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why is the molybdenum-substituted tungsten-dependent formaldehyde ferredoxin oxidoreductase not active? A quantum chemical study.
    Liao RZ
    J Biol Inorg Chem; 2013 Feb; 18(2):175-181. PubMed ID: 23183892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Arsenic Tolerance of Pyrococcus furiosus by Heterologous Expression of a Respiratory Arsenate Reductase.
    Haja DK; Wu CH; Ponomarenko O; Poole FL; George GN; Adams MWW
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32859593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multinuclear NMR study of the complexes of 6-phospho-D-gluconic acid with W(VI) and Mo(VI).
    Ramos L; Gil VM
    Carbohydr Res; 2004 Sep; 339(13):2225-32. PubMed ID: 15337450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WOR5, a novel tungsten-containing aldehyde oxidoreductase from Pyrococcus furiosus with a broad substrate Specificity.
    Bevers LE; Bol E; Hagedoorn PL; Hagen WR
    J Bacteriol; 2005 Oct; 187(20):7056-61. PubMed ID: 16199576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxyanion selectivity in sulfate and molybdate transport proteins: an ab initio/CDM study.
    Dudev T; Lim C
    J Am Chem Soc; 2004 Aug; 126(33):10296-305. PubMed ID: 15315443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of ATPase activity of class II chaperonin from the hyperthermophilic archaeon Pyrococcus furiosus.
    Chen HY; Tan XL; Lu J; Zhang CX; Zhang Y; Yang SL
    Biotechnol Lett; 2009 Nov; 31(11):1753-8. PubMed ID: 19590830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive search for DNA polymerase in the hyperthermophilic archaeon, Pyrococcus furiosus.
    Ishino S; Ishino Y
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(4-6):681-91. PubMed ID: 16838855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic archaeon Pyrococcus furiosus.
    Roy R; Adams MW
    J Bacteriol; 2002 Dec; 184(24):6952-6. PubMed ID: 12446645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress protection and the repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and in related species.
    Strand KR; Sun C; Li T; Jenney FE; Schut GJ; Adams MW
    Arch Microbiol; 2010 Jun; 192(6):447-59. PubMed ID: 20379702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical probing of the photoreduction of molybdenum and tungsten Dawson-type polyoxometalates in molecular and ionic liquid media using water as an electron donor.
    Bernardini G; Wedd AG; Zhao C; Bond AM
    Dalton Trans; 2012 Sep; 41(33):9944-54. PubMed ID: 22740089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs.
    Tori K; Kimizu M; Ishino S; Ishino Y
    J Bacteriol; 2007 Aug; 189(15):5652-7. PubMed ID: 17496095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 A resolution crystal structure and its mechanistic implications.
    Hu Y; Faham S; Roy R; Adams MW; Rees DC
    J Mol Biol; 1999 Feb; 286(3):899-914. PubMed ID: 10024458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.