These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19789901)

  • 1. New bioactive oxylipins formed by non-enzymatic free-radical-catalyzed pathways: the phytoprostanes.
    Durand T; Bultel-Poncé V; Guy A; Berger S; Mueller MJ; Galano JM
    Lipids; 2009 Oct; 44(10):875-88. PubMed ID: 19789901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxylipins in the spikemoss Selaginella martensii: Detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones.
    Ogorodnikova AV; Mukhitova FK; Grechkin AN
    Phytochemistry; 2015 Oct; 118():42-50. PubMed ID: 26277770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoprostanes and phytoprostanes: Bioactive lipids.
    Durand T; Bultel-Poncé V; Guy A; El Fangour S; Rossi JC; Galano JM
    Biochimie; 2011 Jan; 93(1):52-60. PubMed ID: 20594988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Enzymatic Synthesis of Bioactive Isoprostanoids in the Diatom
    Lupette J; Jaussaud A; Vigor C; Oger C; Galano JM; Réversat G; Vercauteren J; Jouhet J; Durand T; Maréchal E
    Plant Physiol; 2018 Nov; 178(3):1344-1357. PubMed ID: 30237205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jasmonate biochemical pathway.
    Gfeller A; Dubugnon L; Liechti R; Farmer EE
    Sci Signal; 2010 Feb; 3(109):cm3. PubMed ID: 20159849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of polyunsaturated fatty acids to produce lipid mediators.
    Christie WW; Harwood JL
    Essays Biochem; 2020 Sep; 64(3):401-421. PubMed ID: 32618335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The isoprostanoid pathway in plants.
    Thoma I; Krischke M; Loeffler C; Mueller MJ
    Chem Phys Lipids; 2004 Mar; 128(1-2):135-48. PubMed ID: 15037159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants.
    Thoma I; Loeffler C; Sinha AK; Gupta M; Krischke M; Steffan B; Roitsch T; Mueller MJ
    Plant J; 2003 May; 34(3):363-75. PubMed ID: 12713542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid.
    Gao L; Yin H; Milne GL; Porter NA; Morrow JD
    J Biol Chem; 2006 May; 281(20):14092-9. PubMed ID: 16569632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of enzymatic allene oxide cyclization in plants.
    Hofmann E; Pollmann S
    Plant Physiol Biochem; 2008 Mar; 46(3):302-8. PubMed ID: 18272375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cyclopentenone (A2/J2) isoprostanes--unique, highly reactive products of arachidonate peroxidation.
    Milne GL; Musiek ES; Morrow JD
    Antioxid Redox Signal; 2005; 7(1-2):210-20. PubMed ID: 15650409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the formation of dinor isoprostanes E1 from alpha-linolenic acid in plants.
    Parchmann S; Mueller MJ
    J Biol Chem; 1998 Dec; 273(49):32650-5. PubMed ID: 9830005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of phyto-oxylipins in plant defense.
    Blée E
    Trends Plant Sci; 2002 Jul; 7(7):315-22. PubMed ID: 12119169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radically novel prostaglandins in animals and plants: the isoprostanes.
    Mueller MJ
    Chem Biol; 1998 Dec; 5(12):R323-33. PubMed ID: 9862802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of prostaglandins E2 and D2 via the isoprostane pathway: a mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase.
    Gao L; Zackert WE; Hasford JJ; Danekis ME; Milne GL; Remmert C; Reese J; Yin H; Tai HH; Dey SK; Porter NA; Morrow JD
    J Biol Chem; 2003 Aug; 278(31):28479-89. PubMed ID: 12746435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into oxidative stress: the isoprostanes.
    Montuschi P; Barnes P; Roberts LJ
    Curr Med Chem; 2007; 14(6):703-17. PubMed ID: 17346157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic and α-linolenic acids; bioactivities and potential use as biomarkers.
    Galano JM; Lee JC; Gladine C; Comte B; Le Guennec JY; Oger C; Durand T
    Biochim Biophys Acta; 2015 Apr; 1851(4):446-55. PubMed ID: 25463478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of oxidative stress and wound-inducible dinor isoprostanes F(1) (phytoprostanes F(1)) in plants.
    Imbusch R; Mueller MJ
    Plant Physiol; 2000 Nov; 124(3):1293-304. PubMed ID: 11080305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.
    Vigor C; Bertrand-Michel J; Pinot E; Oger C; Vercauteren J; Le Faouder P; Galano JM; Lee JC; Durand T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 964():65-78. PubMed ID: 24856297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The jasmonate biochemical pathway.
    Liechti R; Farmer EE
    Sci STKE; 2003 Oct; 2003(203):CM18. PubMed ID: 14534325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.