These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1979075)

  • 41. Oxidative inactivation of glutamine synthetase subunits.
    Nakamura K; Stadtman ER
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2011-5. PubMed ID: 6144100
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive.
    Pearson JT; Dabrowski MJ; Kung I; Atkins WM
    Arch Biochem Biophys; 2005 Apr; 436(2):397-405. PubMed ID: 15797252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thyroid membrane ADP ribosyltransferase activity. Stimulation by thyrotropin and activity in functioning and nonfunctioning rat thyroid cells in culture.
    De Wolf MJ; Vitti P; Ambesi-Impiombato FS; Kohn LD
    J Biol Chem; 1981 Dec; 256(23):12287-96. PubMed ID: 6271780
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppression of GTP/T alpha-dependent activation of cGMP phosphodiesterase by ADP-ribosylation by its gamma subunit in amphibian rod photoreceptor membranes.
    Bondarenko VA; Yamazaki M; Hayashi F; Yamazaki A
    Biochemistry; 1999 Jun; 38(24):7755-63. PubMed ID: 10387015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities.
    Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E
    FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of mouse Rt6.1 NAD:arginine ADP-ribosyltransferase.
    Moss J; Stevens LA; Cavanaugh E; Okazaki IJ; Bortell R; Kanaitsuka T; Mordes JP; Greiner DL; Rossini AA
    J Biol Chem; 1997 Feb; 272(7):4342-6. PubMed ID: 9020154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inactivation of Bacillus subtilis glutamine synthetase by metal-catalyzed oxidation.
    Kimura K; Sugano S
    J Biochem; 1992 Dec; 112(6):828-33. PubMed ID: 1363551
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NAD(+)-dependent ADP-ribosylation of T lymphocyte alloantigen RT6.1 reversibly proceeding in intact rat lymphocytes.
    Maehama T; Nishina H; Hoshino S; Kanaho Y; Katada T
    J Biol Chem; 1995 Sep; 270(39):22747-51. PubMed ID: 7559400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid transfer of oxygens from inorganic phosphate to glutamine catalyzed by Escherichia coli glutamine synthetase.
    Stokes BO; Boyer PD
    J Biol Chem; 1976 Sep; 251(18):5558-64. PubMed ID: 9391
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inactivation of pea seed glutamine synthetase by the toxin, tabtoxinine-beta-lactam.
    Langston-Unkefer PJ; Robinson AC; Knight TJ; Durbin RD
    J Biol Chem; 1987 Feb; 262(4):1608-13. PubMed ID: 2879840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subunit interaction elicited by partial inactivation with L-methionine sulfoximine and ATP differently affects the biosynthetic and gamma-glutamyltransferase reactions catalyzed by yeast glutamine synthetase.
    Kim KH; Rhee SG
    J Biol Chem; 1987 Sep; 262(27):13050-4. PubMed ID: 2888756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Location and amino acid sequence around the ADP-ribosylation site in the cholera toxin active subunit A1.
    Lai CY; Xia QC; Salotra PT
    Biochem Biophys Res Commun; 1983 Oct; 116(1):341-8. PubMed ID: 6315008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of the mechanism of phosphinothricin inactivation of Escherichia coli glutamine synthetase using rapid quench kinetic technique.
    Abell LM; Villafranca JJ
    Biochemistry; 1991 Jun; 30(25):6135-41. PubMed ID: 1676298
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Guanine nucleotide-dependent ADP-ribosylation of soluble rho catalyzed by Clostridium botulinum C3 ADP-ribosyltransferase. Isolation and characterization of a newly recognized form of rhoA.
    Williamson KC; Smith LA; Moss J; Vaughan M
    J Biol Chem; 1990 Dec; 265(34):20807-12. PubMed ID: 2174426
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of a TRIM72 ADP-ribosylation cycle in myocardial injury and membrane repair.
    Ishiwata-Endo H; Kato J; Tonouchi A; Chung YW; Sun J; Stevens LA; Zhu J; Aponte AM; Springer DA; San H; Takeda K; Yu ZX; Hoffmann V; Murphy E; Moss J
    JCI Insight; 2018 Nov; 3(22):. PubMed ID: 30429362
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subunit interaction in unadenylylated glutamine synthetase from Escherichia coli. Evidence from methionine sulfoximine inhibition studies.
    Rhee SG; Chock PB; Wedler FC; Sugiyama Y
    J Biol Chem; 1981 Jan; 256(2):644-8. PubMed ID: 6108959
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mono-ADP-ribosylation of Gs by an eukaryotic arginine-specific ADP-ribosyltransferase stimulates the adenylate cyclase system.
    Inageda K; Nishina H; Tanuma S
    Biochem Biophys Res Commun; 1991 May; 176(3):1014-9. PubMed ID: 1903936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Active site ligand stabilization of quaternary structures of glutamine synthetase from Escherichia coli.
    Maurizi MR; Ginsburg A
    J Biol Chem; 1982 Jun; 257(12):7246-51. PubMed ID: 6123504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assay of arginine-specific adenosine-5'-diphosphate-ribosyltransferase by capillary electrophoresis.
    Tsuchiya M; Osago H; Shimoyama M
    Anal Biochem; 1995 Jan; 224(2):486-9. PubMed ID: 7733449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.