These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1979077)

  • 41. Interaction between 1,4-thiazine derivatives and D-amino-acid oxidase.
    Ricci G; Nardini M; Caccuri AM; Federici G
    Biochim Biophys Acta; 1983 Oct; 748(1):40-7. PubMed ID: 6137240
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional significance of the shark Na,K-ATPase N-terminal domain. Is the structurally variable N-Terminus involved in tissue-specific regulation by FXYD proteins?
    Cornelius F; Mahmmoud YA; Meischke L; Cramb G
    Biochemistry; 2005 Oct; 44(39):13051-62. PubMed ID: 16185073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The kinetic mechanism of D-amino acid oxidase with D-alpha-aminobutyrate as substrate. Effect of enzyme concentration on the kinetics.
    Fitzpatrick PF; Massey V
    J Biol Chem; 1982 Nov; 257(21):12916-23. PubMed ID: 6127341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conversion, by limited proteolysis, of an archaebacterial citrate synthase into essentially a citryl-CoA hydrolase.
    Lill U; Lefrank S; Henschen A; Eggerer H
    Eur J Biochem; 1992 Sep; 208(2):459-66. PubMed ID: 1521537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immunochemical studies on Rhodotorula gracilis D-amino acid oxidase.
    Pollegioni L; Simonetta MP
    Experientia; 1991 Mar; 47(3):232-5. PubMed ID: 1672654
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular cloning and sequence analysis of cDNAs encoding porcine kidney D-amino acid oxidase.
    Fukui K; Watanabe F; Shibata T; Miyake Y
    Biochemistry; 1987 Jun; 26(12):3612-8. PubMed ID: 2888479
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The TyrR protein of Escherichia coli, analysis by limited proteolysis of domain structure and ligand-mediated conformational changes.
    Cui J; Somerville RL
    J Biol Chem; 1993 Mar; 268(7):5040-7. PubMed ID: 8444880
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation and solubilization of the retinal cGMP-specific phosphodiesterase by limited proteolysis. Role of the C-terminal domain of the beta-subunit.
    Catty P; Deterre P
    Eur J Biochem; 1991 Jul; 199(2):263-9. PubMed ID: 1649045
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proteolytic fragmentation reveals the oligomeric and domain structure of porcine aminopeptidase A.
    Hesp JR; Hooper NM
    Biochemistry; 1997 Mar; 36(10):3000-7. PubMed ID: 9062131
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of pH on the interaction of benzoate and D-amino acid oxidase.
    Quay S; Massey V
    Biochemistry; 1977 Jul; 16(15):3348-54. PubMed ID: 19047
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of cofactor binding in tryptophan accessibility and conformational stability of His-tagged D-amino acid oxidase from Trigonopsis variabilis.
    Arroyo M; Menéndez M; García JL; Campillo N; Hormigo D; de la Mata I; Castillón MP; Acebal C
    Biochim Biophys Acta; 2007 May; 1774(5):556-65. PubMed ID: 17466607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immobilized D-amino acid oxidase.
    Naoi M; Naoi M; Yagi K
    Biochim Biophys Acta; 1978 Mar; 523(1):9-26. PubMed ID: 24475
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The (Na,K)-ATPase of Friend erythroleukemia cells is phosphorylated near the ATP hydrolysis by an endogenous membrane-bound kinase.
    Ling L; Cantley L
    J Biol Chem; 1984 Apr; 259(7):4089-95. PubMed ID: 6323456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural organization of alpha-subunit from purified and microsomal toad kidney (Na+ + K+)-ATPase as assessed by controlled trypsinolysis.
    Zamofing D; Rossier BC; Geering K
    Biochim Biophys Acta; 1987 Nov; 904(2):381-91. PubMed ID: 2822121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrophilic amination of a single methionine residue located at the active site of D-amino acid oxidase by O-(2,4-dinitrophenyl)hydroxylamine.
    D'Silva C; Williams CH; Massey V
    Biochemistry; 1986 Sep; 25(19):5602-8. PubMed ID: 2877687
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions between fragments of trypsinized Na,K-ATPase detected by thermal inactivation of Rb+ occlusion and dissociation of the M5/M6 fragment.
    Shainskaya A; Nesaty V; Karlish SJ
    J Biol Chem; 1998 Mar; 273(13):7311-9. PubMed ID: 9516425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Affinity labelling with MgATP analogues reveals coexisting Na+ and K+ forms of the alpha-subunits of Na+/K+-ATPase.
    Antolovic R; Hamer E; Serpersu EH; Kost H; Linnertz H; Kovarik Z; Schoner W
    Eur J Biochem; 1999 Apr; 261(1):181-9. PubMed ID: 10103049
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-site oxidation, cysteine 108 to cysteine sulfinic acid, in D-amino acid oxidase from Trigonopsis variabilis and its structural and functional consequences.
    Slavica A; Dib I; Nidetzky B
    Appl Environ Microbiol; 2005 Dec; 71(12):8061-8. PubMed ID: 16332786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Man9-mannosidase from pig liver is a type-II membrane protein that resides in the endoplasmic reticulum. cDNA cloning and expression of the enzyme in COS 1 cells.
    Bieberich E; Treml K; Völker C; Rolfs A; Kalz-Füller B; Bause E
    Eur J Biochem; 1997 Jun; 246(3):681-9. PubMed ID: 9219526
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium.
    Narhi LO; Fulco AJ
    J Biol Chem; 1987 May; 262(14):6683-90. PubMed ID: 3106360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.