These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19791634)

  • 1. Effect of information load and time on observational learning.
    Breslin G; Hodges NJ; Williams AM
    Res Q Exerc Sport; 2009 Sep; 80(3):480-90. PubMed ID: 19791634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-point focus manipulations to determine what information is used during observational learning.
    Hayes SJ; Hodges NJ; Huys R; Mark Williams A
    Acta Psychol (Amst); 2007 Oct; 126(2):120-37. PubMed ID: 17204236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling relative motion to facilitate intra-limb coordination.
    Breslin G; Hodges NJ; Williams AM; Curran W; Kremer J
    Hum Mov Sci; 2005 Jun; 24(3):446-63. PubMed ID: 16099522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of intra- and inter-limb relative motion information in modelling a novel motor skill.
    Breslin G; Hodges NJ; Williams AM; Kremer J; Curran W
    Hum Mov Sci; 2006 Dec; 25(6):753-66. PubMed ID: 16879888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficacy of demonstrations in teaching children an unfamiliar movement skill: the effects of object-orientated actions and point-light demonstrations.
    Hayes SJ; Hodges NJ; Scott MA; Horn RR; Williams AM
    J Sports Sci; 2007 Mar; 25(5):559-75. PubMed ID: 17365542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of manipulating relative and absolute motion information during observational learning of an aiming task.
    Al-Abood SA; Davids K; Bennett SJ; Ashford D; Martinez Marin M
    J Sports Sci; 2001 Jul; 19(7):507-20. PubMed ID: 11461054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What is modelled during observational learning?
    Hodges NJ; Williams AM; Hayes SJ; Breslin G
    J Sports Sci; 2007 Mar; 25(5):531-45. PubMed ID: 17365540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of autonomy-supportive versus controlling instructional language on motor learning.
    Hooyman A; Wulf G; Lewthwaite R
    Hum Mov Sci; 2014 Aug; 36():190-8. PubMed ID: 24861925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning from demonstrations: the role of visual search during observational learning from video and point-light models.
    Horn RR; Williams AM; Scott MA
    J Sports Sci; 2002 Mar; 20(3):253-69. PubMed ID: 11999480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration as a rate enhancer to changes in coordination during early skill acquisition.
    Horn RR; Williams AM; Hayes SJ; Hodges NJ; Scott MA
    J Sports Sci; 2007 Mar; 25(5):599-614. PubMed ID: 17365545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of modeling modalities in the observational learning of an externally paced skill.
    Weeks DL
    Res Q Exerc Sport; 1992 Dec; 63(4):373-80. PubMed ID: 1439162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistency of kinematic and kinetic patterns during a prolonged spell of cricket fast bowling: an exploratory laboratory study.
    Schaefer A; O'dwyer N; Ferdinands RED; Edwards S
    J Sports Sci; 2018 Mar; 36(6):679-690. PubMed ID: 28535739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of the minimal constraining information during observation for movement reproduction.
    Hodges NJ; Hayes SJ; Breslin G; Williams AM
    Acta Psychol (Amst); 2005 Jul; 119(3):264-82. PubMed ID: 15939026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity of learning a sport skill to the visual condition of acquisition.
    Moradi J; Movahedi A; Salehi H
    J Mot Behav; 2014; 46(1):17-23. PubMed ID: 24164634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goal-directed imitation: the means to an end.
    Hayes SJ; Ashford D; Bennett SJ
    Acta Psychol (Amst); 2008 Feb; 127(2):407-15. PubMed ID: 17880901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centre of mass kinematics of fast bowling in cricket.
    Ferdinands R; Marshall RN; Kersting U
    Sports Biomech; 2010 Sep; 9(3):139-52. PubMed ID: 21162360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the model's skill level on observational motor learning.
    Pollock BJ; Lee TD
    Res Q Exerc Sport; 1992 Mar; 63(1):25-9. PubMed ID: 1574658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor learning in children: feedback effects on skill acquisition.
    Sullivan KJ; Kantak SS; Burtner PA
    Phys Ther; 2008 Jun; 88(6):720-32. PubMed ID: 18339797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between segmental kinematics and ball spin in Type-2 cricket spin bowling.
    Beach AJ; Ferdinands RED; Sinclair PJ
    J Sports Sci; 2018 May; 36(10):1127-1134. PubMed ID: 28749751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of digitisation of the humeral epicondyles on quantifying elbow kinematics during cricket bowling.
    Eftaxiopoulou T; Gupte CM; Dear JP; Bull AM
    J Sports Sci; 2013; 31(15):1722-30. PubMed ID: 23879677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.