These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1979169)

  • 21. Transient synaptic potentiation in the visual cortex. I. Cellular mechanisms.
    Harsanyi K; Friedlander MJ
    J Neurophysiol; 1997 Mar; 77(3):1269-83. PubMed ID: 9084595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective enhancement of non-NMDA receptor-mediated responses following induction of long-term potentiation in entorhinal cortex.
    Yun SH; Huh K; Jung MW
    Synapse; 2000 Jan; 35(1):1-7. PubMed ID: 10579802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of hippocampal long-term potentiation by alpha-tocopherol.
    Xie Z; Sastry BR
    Brain Res; 1993 Feb; 604(1-2):173-9. PubMed ID: 8457845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subthreshold contribution of N-methyl-d-aspartate receptors to long-term potentiation induced by low-frequency pairing in rat hippocampal CA1 pyramidal cells.
    Krasteniakov NV; Martina M; Bergeron R
    Neuroscience; 2004; 126(1):83-94. PubMed ID: 15145075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of prior synaptic activity on the induction of long-term potentiation.
    Huang YY; Colino A; Selig DK; Malenka RC
    Science; 1992 Feb; 255(5045):730-3. PubMed ID: 1346729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses.
    Li HB; Jackson MF; Yang K; Trepanier C; Salter MW; Orser BA; Macdonald JF
    Hippocampus; 2011 Oct; 21(10):1053-61. PubMed ID: 20865743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in field excitatory postsynaptic potential shape induced by tetanization in the CA1 region of the guinea-pig hippocampal slice.
    Hess G; Gustafsson B
    Neuroscience; 1990; 37(1):61-9. PubMed ID: 1978743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spike-timing-dependent plasticity at resting and conditioned lateral perforant path synapses on granule cells in the dentate gyrus: different roles of N-methyl-D-aspartate and group I metabotropic glutamate receptors.
    Lin YW; Yang HW; Wang HJ; Gong CL; Chiu TH; Min MY
    Eur J Neurosci; 2006 May; 23(9):2362-74. PubMed ID: 16706844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A peculiar form of potentiation in mossy fiber synapses.
    Staubli U
    Epilepsy Res Suppl; 1992; 7():151-7. PubMed ID: 1334660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of NMDA receptor channels to the expression of LTP in the hippocampal dentate gyrus.
    Wang Z; Song D; Berger TW
    Hippocampus; 2002; 12(5):680-8. PubMed ID: 12440582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger.
    O'Dell TJ; Hawkins RD; Kandel ER; Arancio O
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11285-9. PubMed ID: 1684863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus.
    Malenka RC
    Neuron; 1991 Jan; 6(1):53-60. PubMed ID: 1670922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-methyl-D-aspartate receptors at parallel fiber synapses in the dorsal cochlear nucleus.
    Manis PB; Molitor SC
    J Neurophysiol; 1996 Sep; 76(3):1639-56. PubMed ID: 8890282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of two forms of long-term potentiation in single hippocampal neurons.
    Zalutsky RA; Nicoll RA
    Science; 1990 Jun; 248(4963):1619-24. PubMed ID: 2114039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
    Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH
    Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Further characteristics of long-term potentiation in piriform cortex.
    Jung MW; Larson J
    Synapse; 1994 Dec; 18(4):298-306. PubMed ID: 7886622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short-term synaptic enhancement and long-term potentiation in neocortex.
    Castro-Alamancos MA; Connors BW
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1335-9. PubMed ID: 8577765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conditions for the induction of long-term potentiation and long-term depression by conjunctive pairing in the dentate gyrus in vitro.
    Wang Y; Wu J; Rowan MJ; Anwyl R
    J Neurophysiol; 1997 Nov; 78(5):2569-73. PubMed ID: 9356406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ketamine blocks the induction of LTP at the lateral entorhinal cortex-dentate gyrus synapses.
    Zhang DX; Levy WB
    Brain Res; 1992 Oct; 593(1):124-7. PubMed ID: 1458314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for involvement of group II/III metabotropic glutamate receptors in NMDA receptor-independent long-term potentiation in area CA1 of rat hippocampus.
    Grover LM; Yan C
    J Neurophysiol; 1999 Dec; 82(6):2956-69. PubMed ID: 10601432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.