These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19791778)

  • 1. Solution-based fabrication of single-crystalline arrays of organic nanowires.
    Tong Y; Tang Q; Lemke HT; Moth-Poulsen K; Westerlund F; Hammershøj P; Bechgaard K; Hu W; Bjørnholm T
    Langmuir; 2010 Jan; 26(2):1130-6. PubMed ID: 19791778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple drop-casting method.
    Liu Y; Zhao X; Cai B; Pei T; Tong Y; Tang Q; Liu Y
    Nanoscale; 2014; 6(3):1323-8. PubMed ID: 24352138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale controllable patterning growth of aligned organic nanowires through evaporation-induced self-assembly.
    Bao R; Zhang C; Wang Z; Zhang X; Ou X; Lee CS; Jie J; Zhang X
    Chemistry; 2012 Jan; 18(3):975-80. PubMed ID: 22170498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterning organic single-crystal transistor arrays.
    Briseno AL; Mannsfeld SC; Ling MM; Liu S; Tseng RJ; Reese C; Roberts ME; Yang Y; Wudl F; Bao Z
    Nature; 2006 Dec; 444(7121):913-7. PubMed ID: 17167482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of single-crystalline ZnTe nanowire arrays.
    Li L; Yang Y; Huang X; Li G; Zhang L
    J Phys Chem B; 2005 Jun; 109(25):12394-8. PubMed ID: 16852533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-area highly-oriented SiC nanowire arrays: synthesis, Raman, and photoluminescence properties.
    Li Z; Zhang J; Meng A; Guo J
    J Phys Chem B; 2006 Nov; 110(45):22382-6. PubMed ID: 17091978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertical organic nanowire arrays: controlled synthesis and chemical sensors.
    Zhao YS; Wu J; Huang J
    J Am Chem Soc; 2009 Mar; 131(9):3158-9. PubMed ID: 19256563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties.
    Yu Y; Jin CH; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Oct; 109(40):18772-6. PubMed ID: 16853415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro- and nanocrystals of organic semiconductors.
    Li R; Hu W; Liu Y; Zhu D
    Acc Chem Res; 2010 Apr; 43(4):529-40. PubMed ID: 20067223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance.
    Li Y; Yang XY; Rooke J; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(2):303-12. PubMed ID: 20546764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High density germanium nanowire assemblies: contact challenges and electrical characterization.
    Erts D; Polyakov B; Daly B; Morris MA; Ellingboe S; Boland J; Holmes JD
    J Phys Chem B; 2006 Jan; 110(2):820-6. PubMed ID: 16471609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freestanding mesoporous quasi-single-crystalline CO3O4 nanowire arrays.
    Li Y; Tan B; Wu Y
    J Am Chem Soc; 2006 Nov; 128(44):14258-9. PubMed ID: 17076490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step dry method for the synthesis of supported single-crystalline organic nanowires formed by pi-conjugated molecules.
    Borras A; Gröning O; Aguirre M; Gramm F; Gröning P
    Langmuir; 2010 Apr; 26(8):5763-71. PubMed ID: 20302277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ growing and patterning of aligned organic nanowire arrays via dip coating.
    Liu N; Zhou Y; Wang L; Peng J; Wang J; Pei J; Cao Y
    Langmuir; 2009 Jan; 25(2):665-71. PubMed ID: 19090657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.
    Burkert K; Neumann T; Wang J; Jonas U; Knoll W; Ottleben H
    Langmuir; 2007 Mar; 23(6):3478-84. PubMed ID: 17269810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-nanowire electrically driven lasers.
    Duan X; Huang Y; Agarwal R; Lieber CM
    Nature; 2003 Jan; 421(6920):241-5. PubMed ID: 12529637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers.
    Yuan FW; Wang CY; Li GA; Chang SH; Chu LW; Chen LJ; Tuan HY
    Nanoscale; 2013 Oct; 5(20):9875-81. PubMed ID: 23979254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors.
    Zhai T; Fang X; Liao M; Xu X; Li L; Liu B; Koide Y; Ma Y; Yao J; Bando Y; Golberg D
    ACS Nano; 2010 Mar; 4(3):1596-602. PubMed ID: 20146437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals.
    Li H; Tee BC; Cha JJ; Cui Y; Chung JW; Lee SY; Bao Z
    J Am Chem Soc; 2012 Feb; 134(5):2760-5. PubMed ID: 22239604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.