These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19791780)

  • 1. Experimental study on energy dissipation of electrolytes in nanopores.
    Zhao J; Culligan PJ; Germaine JT; Chen X
    Langmuir; 2009 Nov; 25(21):12687-96. PubMed ID: 19791780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally responsive fluid behaviors in hydrophobic nanopores.
    Liu L; Zhao J; Culligan PJ; Qiao Y; Chen X
    Langmuir; 2009 Oct; 25(19):11862-8. PubMed ID: 19621904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electric field on liquid infiltration into hydrophobic nanopores.
    Xu B; Qiao Y; Zhou Q; Chen X
    Langmuir; 2011 May; 27(10):6349-57. PubMed ID: 21491865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the addition of electrolyte on liquid infiltration in a hydrophobic nanoporous silica gel.
    Han A; Chen X; Qiao Y
    Langmuir; 2008 Jul; 24(14):7044-7. PubMed ID: 18564859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of gas molecules on nanofluidic behaviors.
    Qiao Y; Cao G; Chen X
    J Am Chem Soc; 2007 Feb; 129(8):2355-9. PubMed ID: 17279750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrolyte solution transport in electropolar nanotubes.
    Zhao J; Culligan PJ; Qiao Y; Zhou Q; Li Y; Tak M; Park T; Chen X
    J Phys Condens Matter; 2010 Aug; 22(31):315301. PubMed ID: 21399357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of thermal phenomena in an ultrathin liquid film sheared between solid surfaces: the influence of the crystal plane on energy and momentum transfer at solid-liquid interfaces.
    Ohara T; Torii D
    J Chem Phys; 2005 Jun; 122(21):214717. PubMed ID: 15974772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Ion Size on Pressure-Induced Infiltration of a Zeolite-Based Nanofluidic System.
    Zhang Y; Wang H; Luo R; Dou Y
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of water infiltration into conical hydrophobic nanopores.
    Liu L; Zhao J; Yin CY; Culligan PJ; Chen X
    Phys Chem Chem Phys; 2009 Aug; 11(30):6520-4. PubMed ID: 19809685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Van der waals-like isotherms in a confined electrolyte by spherical and cylindrical nanopores.
    Aguilar-Pineda GE; Jiménez-Angeles F; Yu J; Lozada-Cassou M
    J Phys Chem B; 2007 Mar; 111(8):2033-44. PubMed ID: 17269816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics study on ultrathin liquid water film sheared between platinum solid walls: liquid structure and energy and momentum transfer.
    Torii D; Ohara T
    J Chem Phys; 2007 Apr; 126(15):154706. PubMed ID: 17461658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and structure of benzene on silica surfaces and in nanopores.
    Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE
    Langmuir; 2009 Sep; 25(18):10648-59. PubMed ID: 19670890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous outflow efficiency of confined liquid in hydrophobic nanopores.
    Gao Y; Li M; Zhang Y; Lu W; Xu B
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25246-25253. PubMed ID: 32989153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infiltration of electrolytes in molecular-sized nanopores.
    Liu L; Chen X; Lu W; Han A; Qiao Y
    Phys Rev Lett; 2009 May; 102(18):184501. PubMed ID: 19518875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of fluid transport in nanopores.
    Xu B; Wang B; Park T; Qiao Y; Zhou Q; Chen X
    J Chem Phys; 2012 May; 136(18):184701. PubMed ID: 22583303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of local evaporation flux and vapor-phase pressure at an evaporative droplet interface.
    Duan F; Ward CA
    Langmuir; 2009 Jul; 25(13):7424-31. PubMed ID: 19371050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal effects of water intrusion in hydrophobic nanoporous materials.
    Karbowiak T; Paulin C; Ballandras A; Weber G; Bellat JP
    J Am Chem Soc; 2009 Jul; 131(29):9898-9. PubMed ID: 19621951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Nanoconfined Water-Ion Coordination Network for Flexible Energy-Dissipation Devices.
    Gao Y; Li M; Zhan C; Zhang H; Yin M; Lu W; Xu B
    Adv Mater; 2023 Oct; 35(42):e2303759. PubMed ID: 37410996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confinement of water in hydrophobic nanopores: effect of the geometry on the energy of intrusion.
    Karbowiak T; Weber G; Bellat JP
    Langmuir; 2014 Jan; 30(1):213-9. PubMed ID: 24351121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.