These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 19791960)
1. Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature. Majumdar A; Köpp D; Ganeva M; Datta D; Bhattacharyya S; Hippler R Rev Sci Instrum; 2009 Sep; 80(9):095103. PubMed ID: 19791960 [TBL] [Abstract][Full Text] [Related]
2. Performance of a size-selected nanocluster deposition facility and in situ characterization of grown films by x-ray photoelectron spectroscopy. Mondal S; Bhattacharyya SR Rev Sci Instrum; 2014 Jun; 85(6):065109. PubMed ID: 24985854 [TBL] [Abstract][Full Text] [Related]
3. Boron ion source based on planar magnetron discharge in self-sputtering mode. Gushenets VI; Hershcovitch A; Kulevoy TV; Oks EM; Savkin KP; Vizir AV; Yushkov GY Rev Sci Instrum; 2010 Feb; 81(2):02B303. PubMed ID: 20192426 [TBL] [Abstract][Full Text] [Related]
4. Deposition of size-selected metal clusters generated by magnetron sputtering and gas condensation: a progress review. Xirouchaki C; Palmer RE Philos Trans A Math Phys Eng Sci; 2004 Jan; 362(1814):117-24. PubMed ID: 15306279 [TBL] [Abstract][Full Text] [Related]
5. A self-sputtering ion source: a new approach to quiescent metal ion beams. Oks E; Anders A Rev Sci Instrum; 2010 Feb; 81(2):02B306. PubMed ID: 20192429 [TBL] [Abstract][Full Text] [Related]
6. Production of pulsed, mass-selected beams of metal and semiconductor clusters. Kamalou O; Rangama J; Ramillon JM; Guinement P; Huber BA Rev Sci Instrum; 2008 Jun; 79(6):063301. PubMed ID: 18601399 [TBL] [Abstract][Full Text] [Related]
7. Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication. Wang L; Huang L; Xie Z; Wang X; Tang B Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023306. PubMed ID: 18315292 [TBL] [Abstract][Full Text] [Related]
8. Boron ion beam generation using a self-sputtering planar magnetron. Vizir A; Nikolaev A; Oks E; Savkin K; Shandrikov M; Yushkov G Rev Sci Instrum; 2014 Feb; 85(2):02C302. PubMed ID: 24593639 [TBL] [Abstract][Full Text] [Related]
9. Flow of nanosize cluster-containing plasma in a magnetron discharge. Smirnov BM; Shyjumon I; Hippler R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066402. PubMed ID: 17677367 [TBL] [Abstract][Full Text] [Related]
10. Advanced nanocluster ion source based on high-power impulse magnetron sputtering and time-resolved measurements of nanocluster formation. Zhang C; Tsunoyama H; Akatsuka H; Sekiya H; Nagase T; Nakajima A J Phys Chem A; 2013 Oct; 117(40):10211-7. PubMed ID: 24079920 [TBL] [Abstract][Full Text] [Related]
11. Size-selected TiO₂ nanocluster catalysts for efficient photoelectrochemical water splitting. Srivastava S; Thomas JP; Rahman MA; Abd-Ellah M; Mohapatra M; Pradhan D; Heinig NF; Leung KT ACS Nano; 2014 Nov; 8(11):11891-8. PubMed ID: 25365773 [TBL] [Abstract][Full Text] [Related]
12. Novel plasma immersion ion implantation and deposition hardware and technique based on high power pulsed magnetron discharge. Wu Z; Tian X; Shi J; Wang Z; Gong C; Yang S; Chu PK Rev Sci Instrum; 2011 Mar; 82(3):033511. PubMed ID: 21456741 [TBL] [Abstract][Full Text] [Related]
13. Gallium ion extraction from a plasma sputter-type ion source. Vasquez M; Imakita S; Kasuya T; Maeno S; Wada M Rev Sci Instrum; 2010 Feb; 81(2):02B717. PubMed ID: 20192457 [TBL] [Abstract][Full Text] [Related]
14. Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition. Majumdar A; Hippler R Rev Sci Instrum; 2007 Jul; 78(7):075103. PubMed ID: 17672789 [TBL] [Abstract][Full Text] [Related]
15. Practical magnetron sputtering system for the deposition of optical multilayer coatings. Dobrowolski JA; Pekelsky JR; Pelletier R; Ranger M; Sullivan BT; Waldorf AJ Appl Opt; 1992 Jul; 31(19):3784-9. PubMed ID: 20725354 [TBL] [Abstract][Full Text] [Related]
16. Optimization of an rf-powered magnetron glow discharge for the trace analysis of glasses and ceramics. Saprykin AI; Becker JS; Dietze HJ Anal Bioanal Chem; 1996 Jul; 355(7-8):831-5. PubMed ID: 15045274 [TBL] [Abstract][Full Text] [Related]
17. Development of ion source with a washer gun for pulsed neutral beam injection. Asai T; Yamaguchi N; Kajiya H; Takahashi T; Imanaka H; Takase Y; Ono Y; Sato KN Rev Sci Instrum; 2008 Jun; 79(6):063502. PubMed ID: 18601403 [TBL] [Abstract][Full Text] [Related]
18. A new magnetron based gas aggregation source of metal nanoclusters coupled to a double time-of-flight mass spectrometer system. Momin T; Bhowmick A Rev Sci Instrum; 2010 Jul; 81(7):075110. PubMed ID: 20687762 [TBL] [Abstract][Full Text] [Related]
19. Ion soft landing using a rectilinear ion trap mass spectrometer. Peng WP; Goodwin MP; Nie Z; Volný M; Ouyang Z; Cooks RG Anal Chem; 2008 Sep; 80(17):6640-9. PubMed ID: 18683953 [TBL] [Abstract][Full Text] [Related]
20. Design and capabilities of an experimental setup based on magnetron sputtering for formation and deposition of size-selected metal clusters on ultra-clean surfaces. Hartmann H; Popok VN; Barke I; von Oeynhausen V; Meiwes-Broer KH Rev Sci Instrum; 2012 Jul; 83(7):073304. PubMed ID: 22852682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]