These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19791970)

  • 1. High-pressure and high-temperature differential scanning calorimeter for combined pressure-concentration-temperature measurements of hydrides.
    Mauron P; Bielmann M; Bissig V; Remhof A; Züttel A
    Rev Sci Instrum; 2009 Sep; 80(9):095113. PubMed ID: 19791970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-pressure and high-temperature x-ray diffraction cell for combined pressure, composition, and temperature measurements of hydrides.
    Mauron P; Bielmann M; Remhof A; Züttel A
    Rev Sci Instrum; 2011 Jun; 82(6):065108. PubMed ID: 21721731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise scanning calorimeter for studying thermal properties of biological macromolecules in dilute solution.
    Privalov G; Kavina V; Freire E; Privalov PL
    Anal Biochem; 1995 Nov; 232(1):79-85. PubMed ID: 8600837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RheoDSC: a hyphenated technique for the simultaneous measurement of calorimetric and rheological evolutions.
    Kiewiet S; Janssens V; Miltner HE; Van Assche G; Van Puyvelde P; Van Mele B
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023905. PubMed ID: 18315314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field.
    Jeppesen S; Linderoth S; Pryds N; Kuhn LT; Jensen JB
    Rev Sci Instrum; 2008 Aug; 79(8):083901. PubMed ID: 19044358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the heat of hydride formation/decomposition by high-pressure differential scanning calorimetry (HP-DSC).
    Rongeat C; Llamas-Jansa I; Doppiu S; Deledda S; Borgschulte A; Schultz L; Gutfleisch O
    J Phys Chem B; 2007 Nov; 111(46):13301-6. PubMed ID: 17973422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ Raman cell for high pressure and temperature studies of metal and complex hydrides.
    Domènech-Ferrer R; Ziegs F; Klod S; Lindemann I; Voigtländer R; Dunsch L; Gutfleisch O
    Anal Chem; 2011 Apr; 83(8):3199-204. PubMed ID: 21410226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-precision apparatus for the characterization of thermal interface materials.
    Kempers R; Kolodner P; Lyons A; Robinson AJ
    Rev Sci Instrum; 2009 Sep; 80(9):095111. PubMed ID: 19791968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New methodology for simultaneous volumetric and calorimetric measurements: direct determination of alpha(p) and C(p) for liquids under pressure.
    Casás LM; Plantier F; Bessières D
    Rev Sci Instrum; 2009 Dec; 80(12):124902. PubMed ID: 20059162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-modulated differential scanning calorimetry. An approach to the continuous, simultaneous determination of heat capacities and expansion coefficients.
    Boehm K; Rösgen J; Hinz HJ
    Anal Chem; 2006 Feb; 78(4):984-90. PubMed ID: 16478087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and reversibility of LiBH4.
    Mauron P; Buchter F; Friedrichs O; Remhof A; Bielmann M; Zwicky CN; Züttel A
    J Phys Chem B; 2008 Jan; 112(3):906-10. PubMed ID: 18088111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optical differential scanning calorimeter cryomicroscope.
    Yuan S; Diller KR
    J Microsc; 2005 May; 218(Pt 2):85-93. PubMed ID: 15857370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ neutron powder diffraction of the formation of SrGa2D2, and hydrogenation behavior of YbGa2 and EuGa2.
    Wenderoth P; Kohlmann H
    Inorg Chem; 2013 Sep; 52(18):10525-31. PubMed ID: 24003866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic measurements of submilligram bulk samples using a membrane-based "calorimeter on a chip".
    Cooke DW; Michel KJ; Hellman F
    Rev Sci Instrum; 2008 May; 79(5):053902. PubMed ID: 18513074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the self-heating tendency of vegetable oils by differential scanning calorimetry.
    Baylon A; Stauffer E; Delémont O
    J Forensic Sci; 2008 Nov; 53(6):1334-43. PubMed ID: 18798771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New approaches to hydrogen storage.
    Graetz J
    Chem Soc Rev; 2009 Jan; 38(1):73-82. PubMed ID: 19088966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing of a scanning adiabatic calorimeter with Joule effect heating of the sample.
    Barreiro-Rodríguez G; Yáñez-Limón JM; Contreras-Servin CA; Herrera-Gomez A
    Rev Sci Instrum; 2008 Jan; 79(1):014902. PubMed ID: 18248058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly precise experimental device for determining the heat capacity of liquids under pressure.
    González-Salgado D; Valencia JL; Troncoso J; Carballo E; Peleteiro J; Romaní L; Bessières D
    Rev Sci Instrum; 2007 May; 78(5):055103. PubMed ID: 17552856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-temperature phase transitions in CsH2PO4 under ambient and high-pressure conditions: a synchrotron x-ray diffraction study.
    Botez CE; Hermosillo JD; Zhang J; Qian J; Zhao Y; Majzlan J; Chianelli RR; Pantea C
    J Chem Phys; 2007 Nov; 127(19):194701. PubMed ID: 18035892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.