These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19791997)

  • 1. Spatiotemporal system identification on nonperiodic domains using Chebyshev spectral operators and system reduction algorithms.
    Khanmohamadi O; Xu D
    Chaos; 2009 Sep; 19(3):033117. PubMed ID: 19791997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal system reconstruction using Fourier spectral operators and structure selection techniques.
    Xu D; Khanmohamadi O
    Chaos; 2008 Dec; 18(4):043122. PubMed ID: 19123632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase space method for identification of driven nonlinear systems.
    Carroll TL
    Chaos; 2009 Sep; 19(3):033121. PubMed ID: 19792001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Neurofuzzy models using GTLS parameter estimation.
    Jakubek S; Hametner C
    IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1121-33. PubMed ID: 19336320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques.
    Xu D; Lu F
    Chaos; 2006 Dec; 16(4):043109. PubMed ID: 17199387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter estimation of nonlinear dynamical systems based on integrator theory.
    Peng H; Li L; Yang Y; Wang C
    Chaos; 2009 Sep; 19(3):033130. PubMed ID: 19792010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.
    Wang R; Gao JY
    Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using synchronization of chaos to identify the dynamics of unknown systems.
    Sorrentino F; Ott E
    Chaos; 2009 Sep; 19(3):033108. PubMed ID: 19791988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the chain of forced oscillators with long-range interaction: from synchronization to chaos.
    Zaslavsky GM; Edelman M; Tarasov VE
    Chaos; 2007 Dec; 17(4):043124. PubMed ID: 18163788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neighborhood detection for the identification of spatiotemporal systems.
    Pan Y; Billings SA
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):846-54. PubMed ID: 18558546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation.
    Yanay H; Khaykovich L; Malomed BA
    Chaos; 2009 Sep; 19(3):033145. PubMed ID: 19792025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel synchronization of discrete-time chaotic systems using neural network observer.
    Naghavi SV; Safavi AA
    Chaos; 2008 Sep; 18(3):033110. PubMed ID: 19045448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental studies of parameter estimation based on chaos feedback synchronization.
    Zhang Y; Tao C; Jiang JJ
    Chaos; 2006 Dec; 16(4):043122. PubMed ID: 17199400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized multiscale radial basis function networks.
    Billings SA; Wei HL; Balikhin MA
    Neural Netw; 2007 Dec; 20(10):1081-94. PubMed ID: 17993257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stationary oscillation of an impulsive delayed system and its application to chaotic neural networks.
    Sun J; Lin H
    Chaos; 2008 Sep; 18(3):033127. PubMed ID: 19045465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer systems are dynamical systems.
    Mytkowicz T; Diwan A; Bradley E
    Chaos; 2009 Sep; 19(3):033124. PubMed ID: 19792004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A decentralized adaptive robust method for chaos control.
    Kobravi HR; Erfanian A
    Chaos; 2009 Sep; 19(3):033111. PubMed ID: 19791991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nonlinearities and uncorrelated or correlated errors in realistic simulated data on the prediction abilities of augmented classical least squares and partial least squares.
    Melgaard DK; Haaland DM
    Appl Spectrosc; 2004 Sep; 58(9):1065-73. PubMed ID: 15479523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiinnovation least-squares identification for system modeling.
    Ding F; Liu PX; Liu G
    IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):767-78. PubMed ID: 19884093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulational instability in a purely nonlinear coupled complex Ginzburg-Landau equations through a nonlinear discrete transmission line.
    Ndzana F; Mohamadou A; Kofané TC
    Chaos; 2008 Dec; 18(4):043121. PubMed ID: 19123631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.