These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 19792041)

  • 21. Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels.
    Fujii Y; Maekawa S; Morita M
    Sci Rep; 2017 Oct; 7(1):13115. PubMed ID: 29030562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes.
    Yagodin SV; Holtzclaw L; Sheppard CA; Russell JT
    J Neurobiol; 1994 Mar; 25(3):265-80. PubMed ID: 8195790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical role of ATP-induced ATP release for Ca2+ signaling in nonsensory cell networks of the developing cochlea.
    Ceriani F; Pozzan T; Mammano F
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7194-E7201. PubMed ID: 27807138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium waves in a grid of clustered channels with synchronous IP
    Rückl M; Rüdiger S
    Eur Phys J E Soft Matter; 2016 Nov; 39(11):108. PubMed ID: 27848113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Astroglial Ca
    Sakuragi S; Niwa F; Oda Y; Mikoshiba K; Bannai H
    Biochem Biophys Res Commun; 2017 May; 486(4):879-885. PubMed ID: 28336440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the role of stochastic channel behavior in intracellular Ca2+ dynamics.
    Falcke M
    Biophys J; 2003 Jan; 84(1):42-56. PubMed ID: 12524264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical modelling of calcium wave propagation in mammalian airway epithelium: evidence for regenerative ATP release.
    Warren NJ; Tawhai MH; Crampin EJ
    Exp Physiol; 2010 Jan; 95(1):232-49. PubMed ID: 19700517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Introduction to focus issue: intracellular Ca2+ dynamics--a change of modeling paradigm?
    Falcke M
    Chaos; 2009 Sep; 19(3):037101. PubMed ID: 19792027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. P2Y(1) purinoceptor-mediated Ca(2+) signaling and Ca(2+) wave propagation in dorsal spinal cord astrocytes.
    Fam SR; Gallagher CJ; Salter MW
    J Neurosci; 2000 Apr; 20(8):2800-8. PubMed ID: 10751431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels.
    Nguyen V; Mathias R; Smith GD
    Bull Math Biol; 2005 May; 67(3):393-432. PubMed ID: 15820736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasma and intracellular membrane inositol 1,4,5-trisphosphate receptors mediate the Ca(2+) increase associated with the ATP-induced increase in ciliary beat frequency.
    Barrera NP; Morales B; Villalón M
    Am J Physiol Cell Physiol; 2004 Oct; 287(4):C1114-24. PubMed ID: 15175223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ca(2+)-sensor region of IP(3) receptor controls intracellular Ca(2+) signaling.
    Miyakawa T; Mizushima A; Hirose K; Yamazawa T; Bezprozvanny I; Kurosaki T; Iino M
    EMBO J; 2001 Apr; 20(7):1674-80. PubMed ID: 11285231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental aspects of cardiac Ca(2+) signaling: interplay between RyR- and IP(3)R-gated Ca(2+) stores.
    Janowski E; Berríos M; Cleemann L; Morad M
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1939-50. PubMed ID: 20304819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology.
    De Bock M; Decrock E; Wang N; Bol M; Vinken M; Bultynck G; Leybaert L
    Biochim Biophys Acta; 2014 Oct; 1843(10):2211-32. PubMed ID: 24768716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks.
    Bennett MR; Farnell L; Gibson WG
    Biophys J; 2005 Oct; 89(4):2235-50. PubMed ID: 16055527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves.
    Haas B; Schipke CG; Peters O; Söhl G; Willecke K; Kettenmann H
    Cereb Cortex; 2006 Feb; 16(2):237-46. PubMed ID: 15930372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prevalence of stochasticity in experimentally observed responses of pancreatic acinar cells to acetylcholine.
    Perc M; Rupnik M; Gosak M; Marhl M
    Chaos; 2009 Sep; 19(3):037113. PubMed ID: 19792038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model of calcium waves in pancreatic and parotid acinar cells.
    Sneyd J; Tsaneva-Atanasova K; Bruce JI; Straub SV; Giovannucci DR; Yule DI
    Biophys J; 2003 Sep; 85(3):1392-405. PubMed ID: 12944257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical analysis of calcium wave propagation based on inositol (1,4,5)-trisphosphate (InsP3) receptor functional properties.
    Bezprozvanny I
    Cell Calcium; 1994 Sep; 16(3):151-66. PubMed ID: 7828170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity.
    Petravicz J; Fiacco TA; McCarthy KD
    J Neurosci; 2008 May; 28(19):4967-73. PubMed ID: 18463250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.